1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
use libc;
use std;
use jack_sys as j;

/// A lock-free ringbuffer. The key attribute of a ringbuffer is that it can be safely accessed by two threads simultaneously,
/// one reading from the buffer and the other writing to it - without using any synchronization or mutual exclusion primitives.
/// For this to work correctly, there can only be a single reader and a single writer thread. Their identities cannot be interchanged.
///
/// # Example
/// ```
/// use jack::prelude as j;
/// let ringbuf = j::RingBuffer::new(1024).unwrap();
/// let (mut reader, mut writer) = ringbuf.into_reader_writer();
///
/// let buf = [0u8, 1, 2, 3];
/// let num = writer.write_buffer(&buf);
/// assert_eq!(num, buf.len());
///
/// // Potentially in a another thread:
/// let mut outbuf = [0u8; 8];
/// let num = reader.read_buffer(&mut outbuf);
/// ```
pub struct RingBuffer(*mut j::jack_ringbuffer_t);

impl RingBuffer {
    /// Allocates a ringbuffer of a specified size.
    pub fn new(size: usize) -> Result<Self, ()> {

        let insize = size as libc::size_t;
        let handle = unsafe { j::jack_ringbuffer_create(insize) };

        if handle.is_null() {
            return Err(());
        }

        Ok(RingBuffer(handle))
    }

    /// Lock a ringbuffer data block into memory.
    pub fn mlock(&mut self) {
        unsafe { j::jack_ringbuffer_mlock(self.0) };
    }

    /// Resets the ring buffer, making an empty buffer. Not thread safe.
    pub fn reset(&mut self) {
        unsafe { j::jack_ringbuffer_reset(self.0) };
    }

    /// Create a reader and writer, to use the ring buffer.
    pub fn into_reader_writer(self) -> (RingBufferReader, RingBufferWriter) {
        let handle = std::sync::Arc::new(self);

        unsafe { (RingBufferReader::new(handle.clone()), RingBufferWriter::new(handle)) }
    }

    /// Re-create the ring buffer object from reader and writer. useful if you need to call reset.
    /// The reader and the writer pair must have been created from the same RingBuffer object.
    /// Not needed for deallocation, disposing of both reader and writer will deallocate buffer resources automatically.
    ///
    /// panics if the reader and the writer were created from different RingBuffer objects.
    pub fn from_reader_writer(r: RingBufferReader, w: RingBufferWriter) -> Self {
        let mut handle_r = r.into_handle();
        let handle_w = w.into_handle();

        if handle_r.0 != handle_w.0 {
            panic!("mismatching read and write handles!")
        }

        let handle = RingBuffer(handle_r.0);

        // make sure that get_mut works
        std::mem::drop(handle_w);
        let muthandle = std::sync::Arc::get_mut(&mut handle_r).unwrap();
        // make sure they don't close when they are dropped.
        muthandle.0 = std::ptr::null_mut();
        handle
    }
}


impl Drop for RingBuffer {
    fn drop(&mut self) {
        if !self.0.is_null() {
            unsafe { j::jack_ringbuffer_free(self.0) };
        }
        self.0 = 0 as *mut j::jack_ringbuffer_t;
    }
}

/// Read end of the ring buffer. Can only be used from one thread (can be different from the write thread).
pub struct RingBufferReader {
    ringbuffer_handle: std::sync::Arc<RingBuffer>,
}

unsafe impl Send for RingBufferReader {}
// impl !Sync for RingBufferReader{ }

/// Write end of the ring buffer. Can only be used from one thread (can be a different from the read thread).
pub struct RingBufferWriter {
    ringbuffer_handle: std::sync::Arc<RingBuffer>,
}

unsafe impl Send for RingBufferWriter {}
// impl !Sync for RingBufferWriter{ }


impl RingBufferReader {
    unsafe fn new(handle: std::sync::Arc<RingBuffer>) -> Self {
        RingBufferReader { ringbuffer_handle: handle }
    }

    fn into_handle(self) -> std::sync::Arc<RingBuffer> {
        self.ringbuffer_handle
    }


    /// Fill a data structure with a description of the current readable data held in the ringbuffer.
    /// This description is returned in a two slices. Two slices are needed because the data to be read may be split 
    /// across the end of the ringbuffer. The first slice represents the bytes ready to be read. if the second slice 
    // is not empty, it is the continuation of the data that ended in the first slices. For convienence, consider using
    // peek_iter instead.
    pub fn get_vector<'a>(&'a self) -> (&'a [u8], &'a [u8]) {
        let mut vec = [j::jack_ringbuffer_data_t::default(), j::jack_ringbuffer_data_t::default()];
        let vecstart = &mut vec[0] as *mut j::jack_ringbuffer_data_t;

        unsafe { j::jack_ringbuffer_get_read_vector(self.ringbuffer_handle.0, vecstart) };


        let view1 = vec[0];
        let view2 = vec[1];

        let buf1 = view1.buf as *mut u8;
        let len1 = view1.len as usize;

        let mut buf2 = view2.buf as *mut u8;
        let len2 = view2.len as usize;

        if len2 == 0 {
            // buf2 can't be null even if length is zero, so just use buf1
            buf2 = buf1;
        }

        let view1 = unsafe { std::slice::from_raw_parts(buf1, len1) };
        let view2 = unsafe { std::slice::from_raw_parts(buf2, len2) };
        (view1, view2)
    }

    /// Read data from the ringbuffer.
    /// Returns: the number of bytes read, which may range from 0 to buf.len().
    pub fn read_buffer(&mut self, buf: &mut [u8]) -> usize {
        if buf.len() == 0 {
            return 0;
        }

        let insize: libc::size_t = buf.len() as libc::size_t;
        let bufstart = &mut buf[0] as *mut _ as *mut libc::c_char;

        let read = unsafe { j::jack_ringbuffer_read(self.ringbuffer_handle.0, bufstart, insize) };
        read as usize
    }

    /// Read data from the ringbuffer. Opposed to read_buffer() this function does not move the read pointer.
    /// Thus it's a convenient way to inspect data in the ringbuffer in a continous fashion.
    /// The price is that the data is copied into a user provided buffer.
    /// For "raw" non-copy inspection of the data in the ringbuffer use get_vector() or peek_iter.
    /// Returns: the number of bytes read, which may range from 0 to buf.len()
    pub fn peek(&self, buf: &mut [u8]) -> usize {
        if buf.len() == 0 {
            return 0;
        }

        let insize: libc::size_t = buf.len() as libc::size_t;
        let bufstart = &mut buf[0] as *mut _ as *mut libc::c_char;

        let read = unsafe { j::jack_ringbuffer_peek(self.ringbuffer_handle.0, bufstart, insize) };
        read as usize
    }

    /// Advance the read pointer. use this after peek/peek_iter or get_vector to advance the buffer pointer.
    pub fn advance(&mut self, cnt: usize) {
        let incnt = cnt as libc::size_t;
        unsafe { j::jack_ringbuffer_read_advance(self.ringbuffer_handle.0, incnt) };
    }


    /// Return the number of bytes available for reading.
    pub fn space(&self) -> usize {
        unsafe { j::jack_ringbuffer_read_space(self.ringbuffer_handle.0) as usize }
    }

    /// Iterator that goes over all the data available to read.
    pub fn peek_iter<'a>
        (&'a self)
         -> std::iter::Chain<std::slice::Iter<'a, u8>, std::slice::Iter<'a, u8>> {

        let (view1, view2) = self.get_vector();

        view1.iter().chain(view2.iter())
    }
}

impl std::io::Read for RingBufferReader {
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        Ok(self.read_buffer(buf))
    }
}

impl RingBufferWriter {
    unsafe fn new(handle: std::sync::Arc<RingBuffer>) -> Self {
        RingBufferWriter { ringbuffer_handle: handle }
    }

    fn into_handle(self) -> std::sync::Arc<RingBuffer> {
        self.ringbuffer_handle
    }

    /// Write data into the ringbuffer.
    /// Returns: The number of bytes written, which may range from 0 to buf.len()
    pub fn write_buffer(&mut self, buf: &[u8]) -> usize {
        if buf.len() == 0 {
            return 0;
        }

        let insize: libc::size_t = buf.len() as libc::size_t;
        let bufstart = &buf[0] as *const _ as *const libc::c_char;

        let read = unsafe { j::jack_ringbuffer_write(self.ringbuffer_handle.0, bufstart, insize) };
        read as usize
    }

    /// Advance the write pointer. use this after peek_iter or get_vector to advance the buffer pointer.
    pub fn advance(&mut self, cnt: usize) {
        let incnt = cnt as libc::size_t;
        unsafe { j::jack_ringbuffer_write_advance(self.ringbuffer_handle.0, incnt) };

    }

    /// Return the number of bytes available for writing.
    pub fn space(&mut self) -> usize {
        unsafe { j::jack_ringbuffer_write_space(self.ringbuffer_handle.0) as usize }
    }

    /// Return a pair of slices of the current writable space in the ringbuffer. two slices are needed because the space available for writing may be split across the end of the ringbuffer.
    /// consider using peek_iter for convience.
    pub fn get_vector<'a>(&'a mut self) -> (&'a mut [u8], &'a mut [u8]) {
        let mut vec = [j::jack_ringbuffer_data_t::default(), j::jack_ringbuffer_data_t::default()];
        let vecstart = &mut vec[0] as *mut j::jack_ringbuffer_data_t;

        unsafe { j::jack_ringbuffer_get_write_vector(self.ringbuffer_handle.0, vecstart) };


        let view1 = vec[0];
        let view2 = vec[1];

        let buf1 = view1.buf as *mut u8;
        let len1 = view1.len as usize;

        let mut buf2 = view2.buf as *mut u8;
        let len2 = view2.len as usize;

        if len2 == 0 {
            // buf2 can't be null even if length is zero, so just use buf1
            buf2 = buf1;
        }


        let view1 = unsafe { std::slice::from_raw_parts_mut(buf1, len1) };
        let view2 = unsafe { std::slice::from_raw_parts_mut(buf2, len2) };
        (view1, view2)
    }

    /// Iterator that goes over all the data available to write.
    pub fn peek_iter<'a>
        (&'a mut self)
         -> std::iter::Chain<std::slice::IterMut<'a, u8>, std::slice::IterMut<'a, u8>> {

        let (mut view1, mut view2) = self.get_vector();

        view1.iter_mut().chain(view2.iter_mut())
    }
}

impl std::io::Write for RingBufferWriter {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        Ok(self.write_buffer(buf))
    }

    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}