1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

use size_hint;
use Itertools;

use std::cmp::Ordering;
use std::mem::replace;

macro_rules! clone_fields {
    ($name:ident, $base:expr, $($field:ident),+) => (
        $name {
            $(
                $field : $base . $field .clone()
            ),*
        }
    );
}

/// Head element and Tail iterator pair
///
/// `PartialEq`, `Eq`, `PartialOrd` and `Ord` are implemented by comparing sequences based on
/// first items (which are guaranteed to exist).
///
/// The meanings of `PartialOrd` and `Ord` are reversed so as to turn the heap used in
/// `KMerge` into a min-heap.
struct HeadTail<I>
    where I: Iterator
{
    head: I::Item,
    tail: I,
}

impl<I> HeadTail<I>
    where I: Iterator
{
    /// Constructs a `HeadTail` from an `Iterator`. Returns `None` if the `Iterator` is empty.
    fn new(mut it: I) -> Option<HeadTail<I>> {
        let head = it.next();
        head.map(|h| {
            HeadTail {
                head: h,
                tail: it,
            }
        })
    }

    /// Get the next element and update `head`, returning the old head in `Some`.
    ///
    /// Returns `None` when the tail is exhausted (only `head` then remains).
    fn next(&mut self) -> Option<I::Item> {
        if let Some(next) = self.tail.next() {
            Some(replace(&mut self.head, next))
        } else {
            None
        }
    }

    /// Hints at the size of the sequence, same as the `Iterator` method.
    fn size_hint(&self) -> (usize, Option<usize>) {
        size_hint::add_scalar(self.tail.size_hint(), 1)
    }
}

impl<I> Clone for HeadTail<I>
    where I: Iterator + Clone,
          I::Item: Clone
{
    fn clone(&self) -> Self {
        clone_fields!(HeadTail, self, head, tail)
    }
}

impl<I> PartialEq for HeadTail<I>
    where I: Iterator,
          I::Item: PartialEq
{
    fn eq(&self, other: &HeadTail<I>) -> bool {
        self.head.eq(&other.head)
    }
}

impl<I> Eq for HeadTail<I>
    where I: Iterator,
          I::Item: Eq
{}

impl<I> PartialOrd for HeadTail<I>
    where I: Iterator,
          I::Item: PartialOrd
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        other.head.partial_cmp(&self.head)
    }

    fn lt(&self, other: &Self) -> bool {
        other.head.lt(&self.head)
    }

    fn le(&self, other: &Self) -> bool {
        other.head.le(&self.head)
    }

    fn gt(&self, other: &Self) -> bool {
        other.head.gt(&self.head)
    }

    fn ge(&self, other: &Self) -> bool {
        other.head.ge(&self.head)
    }
}

impl<I> Ord for HeadTail<I>
    where I: Iterator,
          I::Item: Ord
{
    fn cmp(&self, other: &Self) -> Ordering {
        other.head.cmp(&self.head)
    }
}

/// Make `data` a heap (max-heap w.r.t T's Ord).
fn heapify<T: Ord>(data: &mut [T]) {
    for i in 0..data.len() / 2 {
        sift_down(data, i);
    }
}

/// Sift down element at `index` (`heap` is a max-heap wrt T's Ord).
fn sift_down<T: Ord>(heap: &mut [T], index: usize) {
    debug_assert!(index <= heap.len());
    let mut pos = index;
    let mut child = 2 * pos + 1;
    // the `pos` conditional is to avoid a bounds check
    while pos < heap.len() && child < heap.len() {
        let right = child + 1;

        // pick the bigger of the two children
        if right < heap.len() && heap[child] < heap[right] {
            child = right;
        }

        // sift down is done if we are already in order
        if heap[pos] >= heap[child] {
            return;
        }
        heap.swap(pos, child);
        pos = child;
        child = 2 * pos + 1;
    }
}

/// An iterator adaptor that merges an abitrary number of base iterators in ascending order.
/// If all base iterators are sorted (ascending), the result is sorted.
///
/// Iterator element type is `I::Item`.
///
/// See [*.kmerge()*](trait.Itertools.html#method.kmerge) for more information.
pub struct KMerge<I>
    where I: Iterator
{
    heap: Vec<HeadTail<I>>,
}

/// Create a `KMerge` iterator.
pub fn kmerge_new<I>(iter: I) -> KMerge<<I::Item as IntoIterator>::IntoIter>
    where I: Iterator,
          I::Item: IntoIterator,
          <<I as Iterator>::Item as IntoIterator>::Item: Ord
{
    let (lower, _) = iter.size_hint();
    let mut heap = Vec::with_capacity(lower);
    heap.extend(iter.filter_map(|it| HeadTail::new(it.into_iter())));
    heapify(&mut heap);
    KMerge { heap: heap }
}

impl<I> Clone for KMerge<I>
    where I: Iterator + Clone,
          I::Item: Clone
{
    fn clone(&self) -> KMerge<I> {
        clone_fields!(KMerge, self, heap)
    }
}

impl<I> Iterator for KMerge<I>
    where I: Iterator,
          I::Item: Ord
{
    type Item = I::Item;

    fn next(&mut self) -> Option<Self::Item> {
        if self.heap.is_empty() {
            return None;
        }
        let result = if let Some(next) = self.heap[0].next() {
            next
        } else {
            self.heap.swap_remove(0).head
        };
        sift_down(&mut self.heap, 0);
        Some(result)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.heap.iter()
                 .map(|i| i.size_hint())
                 .fold1(size_hint::add)
                 .unwrap_or((0, Some(0)))
    }
}