1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
//! A module of helper traits and iterators that are not intended to be used
//! directly.

use std::ops::{
    RangeFull,
    Range,
    RangeTo,
    RangeFrom
};

use std::mem;
use std::slice;

/// Apply **IntoIterator** on each element of a tuple.
pub trait IntoIteratorTuple
{
    /// Tuple of values that implement **Iterator**.
    type Output;

    /// Return a tuple of iterators.
    fn into_iterator_tuple(self) -> Self::Output;
}

/// A helper trait for (x, y, z) ++ w => (x, y, z, w),
/// used for implementing `iproduct!`.
pub trait AppendTuple<X> {
    /// Resulting tuple type
    type Result;
    /// “Append” value **x** to a tuple.
    fn append(self, x: X) -> Self::Result;
}

macro_rules! impl_append_tuple(
    () => (
        impl<T> AppendTuple<T> for () {
            type Result = (T, );
            fn append(self, x: T) -> (T, ) {
                (x, )
            }
        }
    );

    ($A:ident, $($B:ident,)*) => (
        impl_append_tuple!($($B,)*);
        #[allow(non_snake_case)]
        impl<$A, $($B,)* T> AppendTuple<T> for ($A, $($B),*) {
            type Result = ($A, $($B, )* T);
            fn append(self, x: T) -> ($A, $($B,)* T) {
                let ($A, $($B),*) = self;
                ($A, $($B,)* x)
            }
        }
    );
);

impl_append_tuple!(A, B, C, D, E, F, G, H, I, J, K, L,);

/// A helper iterator that maps an iterator of tuples like
/// `((A, B), C)` to an iterator of `(A, B, C)`.
///
/// Used by the `iproduct!()` macro.
#[derive(Clone)]
pub struct FlatTuples<I> {
    iter: I,
}

impl<I> FlatTuples<I>
{
    /// Create a new **FlatTuples**.
    #[doc(hidden)]
    pub fn new(iter: I) -> Self
    {
        FlatTuples{iter: iter}
    }
}

impl<X, T, I> Iterator for FlatTuples<I> where
    I: Iterator<Item=(T, X)>,
    T: AppendTuple<X>,
{
    type Item = T::Result;
    #[inline]
    fn next(&mut self) -> Option<Self::Item>
    {
        self.iter.next().map(|(t, x)| t.append(x))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<X, T, I> DoubleEndedIterator for FlatTuples<I> where
    I: DoubleEndedIterator<Item=(T, X)>,
    T: AppendTuple<X>,
{
    #[inline]
    fn next_back(&mut self) -> Option<Self::Item>
    {
        self.iter.next_back().map(|(t, x)| t.append(x))
    }
}

/// **GenericRange** is implemented by Rust's built-in range types, produced
/// by range syntax like `a..`, `..b` or `c..d`.
pub trait GenericRange {
    #[doc(hidden)]
    /// Start index (inclusive)
    fn start(&self) -> Option<usize> { None }
    #[doc(hidden)]
    /// End index (exclusive)
    fn end(&self) -> Option<usize> { None }
}


impl GenericRange for RangeFull {}

impl GenericRange for RangeFrom<usize> {
    fn start(&self) -> Option<usize> { Some(self.start) }
}

impl GenericRange for RangeTo<usize> {
    fn end(&self) -> Option<usize> { Some(self.end) }
}

impl GenericRange for Range<usize> {
    fn start(&self) -> Option<usize> { Some(self.start) }
    fn end(&self) -> Option<usize> { Some(self.end) }
}

/// Helper trait to convert usize to floating point type.
pub trait ToFloat<F> : Copy {
    #[doc(hidden)]
    /// Convert usize to float.
    fn to_float(self) -> F;
}

impl ToFloat<f32> for usize {
    fn to_float(self) -> f32 { self as f32 }
}

impl ToFloat<f64> for usize {
    fn to_float(self) -> f64 { self as f64 }
}

/// A trait for items that can *maybe* be joined together.
pub trait MendSlice : Copy
{
    #[doc(hidden)]
    /// If the slices are contiguous, return them joined into one.
    fn mend(Self, Self) -> Option<Self>;
}

impl<'a, T> MendSlice for &'a [T]
{
    fn mend(a: &'a [T], b: &'a [T]) -> Option<&'a [T]>
    {
        unsafe {
            let a_end = a.as_ptr().offset(a.len() as isize);
            if a_end == b.as_ptr() {
                Some(slice::from_raw_parts(a.as_ptr(), a.len() + b.len()))
            } else {
                None
            }
        }
    }
}

impl<'a> MendSlice for &'a str
{
    fn mend(a: &'a str, b: &'a str) -> Option<&'a str>
    {
        unsafe {
            mem::transmute(MendSlice::mend(a.as_bytes(), b.as_bytes()))
        }
    }
}