1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
#![warn(missing_docs)]
#![cfg_attr(feature = "unstable", feature(core, zero_one))]
#![crate_name="itertools"]

//! Itertools — extra iterator adaptors, functions and macros.
//!
//! To use the iterator methods in this crate, import the [**Itertools** trait](./trait.Itertools.html):
//!
//! ```ignore
//! use itertools::Itertools;
//! ```
//!
//! Some iterators or adaptors are used directly like regular structs, for example
//! [**PutBack**](./struct.PutBack.html), [**Zip**](./struct.Zip.html),
//! [**Stride**](./struct.Stride.html), [**StrideMut**](./struct.StrideMut.html).
//!
//! To use the macros in this crate, use the `#[macro_use]` attribute:
//!
//! ```ignore
//! #[macro_use]
//! extern crate itertools;
//! ```
//!
//! ## License
//! Dual-licensed to be compatible with the Rust project.
//!
//! Licensed under the Apache License, Version 2.0
//! http://www.apache.org/licenses/LICENSE-2.0 or the MIT license
//! http://opensource.org/licenses/MIT, at your
//! option. This file may not be copied, modified, or distributed
//! except according to those terms.
//!
//!

use std::iter::{self, IntoIterator};
use std::fmt::Write;
use std::cmp::Ordering;

pub use adaptors::{
    Interleave,
    Product,
    PutBack,
    FnMap,
    Batching,
    GroupBy,
    Step,
    Merge,
    MultiPeek,
    TakeWhileRef,
    Coalesce,
    CoalesceFn,
};
#[cfg(feature = "unstable")]
pub use adaptors::EnumerateFrom;
pub use intersperse::Intersperse;
pub use islice::{ISlice};
pub use repeatn::RepeatN;
pub use rciter::RcIter;
pub use stride::Stride;
pub use stride::StrideMut;
pub use tee::Tee;
pub use times::Times;
pub use times::times;
pub use linspace::{linspace, Linspace};
pub use zip_longest::{ZipLongest, EitherOrBoth};
pub use ziptuple::{Zip};
#[cfg(feature = "unstable")]
pub use ziptrusted::{ZipTrusted, TrustedIterator};
mod adaptors;
mod intersperse;
mod islice;
mod linspace;
pub mod misc;
mod rciter;
mod repeatn;
pub mod size_hint;
mod stride;
mod tee;
mod times;
mod zip_longest;
mod ziptuple;
#[cfg(feature = "unstable")]
mod ziptrusted;

/// The function pointer map iterator created with *.map_fn()*.
pub type MapFn<I, B> where I: Iterator = iter::Map<I, fn(I::Item) -> B>;

/// An ascending order merge iterator created with *.merge()*.
pub type MergeAscend<I, J> where I: Iterator = Merge<I, J, fn(&I::Item, &I::Item) -> Ordering>;

#[macro_export]
/// Create an iterator over the “cartesian product” of iterators.
///
/// Iterator element type is like **(A, B, ..., E)** if formed
/// from iterators **(I, J, ..., M)** with element types **I::Item = A**, **J::Item = B**, etc.
///
/// ## Example
///
/// ```
/// #[macro_use]
/// extern crate itertools;
/// # fn main() {
/// // Iterate over the coordinates of a 4 x 4 x 4 grid
/// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3)
/// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) {
///    // ..
/// }
/// # }
/// ```
macro_rules! iproduct {
    ($I:expr) => (
        (::std::iter::IntoIterator::into_iter($I))
    );
    ($I:expr, $J:expr) => (
        $crate::Product::new(iproduct!($I), iproduct!($J))
    );
    ($I:expr, $J:expr, $($K:expr),+) => (
        {
            let it = iproduct!($I, $J);
            $(
                let it = $crate::misc::FlatTuples::new(iproduct!(it, $K));
            )*
            it
        }
    );
}

#[macro_export]
/// Create an iterator running multiple iterators in lockstep.
///
/// The izip! iterator yields elements until any subiterator
/// returns `None`.
///
/// Iterator element type is like `(A, B, ..., E)` if formed
/// from iterators `(I, J, ..., M)` implementing `I: Iterator<A>`,
/// `J: Iterator<B>`, ..., `M: Iterator<E>`
///
/// ## Example
///
/// ```
/// #[macro_use]
/// extern crate itertools;
/// # fn main() {
/// // Iterate over three sequences side-by-side
/// let mut xs = [0, 0, 0];
/// let ys = [72, 73, 74];
/// for (i, a, b) in izip!(0..100, &mut xs, &ys) {
///    *a = i ^ *b;
/// }
/// # }
/// ```
macro_rules! izip {
    ($I:expr) => (
        (::std::iter::IntoIterator::into_iter($I))
    );
    ($($I:expr),*) => (
        {
            $crate::Zip::new(($(izip!($I)),*))
        }
    );
}

/// **Deprecated:** Will hopefully be replaced by a dedicated
/// syntax extension that can offer real convenient python-like syntax.
///
/// **Note:** A Python like syntax of `<expression> for <pattern> in <iterator>` is
/// **not possible** with the stable macro rules since Rust 1.0.0-alpha.
///
/// `icompr` as in “iterator comprehension” allows creating a
/// mapped iterator with simple syntax, similar to set builder notation,
/// and directly inspired by Python. Supports an optional filter clause.
///
/// Syntax:
///
///  `icompr!(<expression>, <pattern>, <iterator>)`
///
/// or
///
///  `icompr!(<expression>, <pattern>, <iterator>, <expression>)`
///
/// Each element from the `<iterator>` expression is pattern matched
/// with the `<pattern>`, and the bound names are used to express the
/// mapped-to value.
///
/// Iterator element type is the type of `<expression>`
///
/// ## Example
///
/// ```ignore
/// let mut squares = icompr!(x * x, x, 1..100);
/// ```
#[macro_export]
macro_rules! icompr {
    ($r:expr, $x:pat, $J:expr, $pred:expr) => (
        ($J).filter_map(|$x| if $pred { Some($r) } else { None })
    );
    ($r:expr, $x:pat, $J:expr) => (
        ($J).filter_map(|$x| Some($r))
    );
}

/// The trait **Itertools**: extra iterator adaptors and methods for iterators.
///
/// This trait defines a number of methods. They are divided into two groups:
///
/// * *Adaptors* take an interator and parameter as input, and return
/// a new iterator value. These are listed first in the trait. An example
/// of an adaptor is [*.interleave()*](#method.interleave)
///
/// * *Regular methods* are those that don't return iterators and instead
/// return a regular value of some other kind. [*.find_position()*](#method.find_position)
/// is an example and the first regular method in the list.
pub trait Itertools : Iterator {
    // adaptors

    /// Alternate elements from two iterators until both
    /// run out.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// This iterator is *fused*.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (0..3).interleave(vec![7, 7]);
    /// assert!(itertools::equal(it, vec![0, 7, 1, 7, 2]));
    /// ```
    fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter> where
        J: IntoIterator<Item=Self::Item>,
        Self: Sized
    {
        Interleave::new(self, other.into_iter())
    }

    /// An iterator adaptor to insert a particular value
    /// between each element of the adapted iterator.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// This iterator is *fused*.
    fn intersperse(self, element: Self::Item) -> Intersperse<Self> where
        Self: Sized,
        Self::Item: Clone
    {
        Intersperse::new(self, element)
    }

    /// Create an iterator which iterates over both this and the specified
    /// iterator simultaneously, yielding pairs of two optional elements.
    ///
    /// This iterator is *fused*.
    ///
    /// When both iterators return **None**, all further invocations of *.next()* 
    /// will return **None**.
    ///
    /// # Example
    ///
    /// ```rust
    /// use itertools::EitherOrBoth::{Both, Right};
    /// use itertools::Itertools;
    /// let it = (0..1).zip_longest(1..3);
    /// assert!(itertools::equal(it, vec![Both(0, 1), Right(2)]));
    /// ```
    ///
    /// Iterator element type is **EitherOrBoth\<Self::Item, J::Item\>**.
    #[inline]
    fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter> where
        J: IntoIterator,
        Self: Sized,
    {
        ZipLongest::new(self, other.into_iter())
    }

    /// A “meta iterator adaptor”. Its closure recives a reference to the iterator
    /// and may pick off as many elements as it likes, to produce the next iterator element.
    ///
    /// Iterator element type is **B**.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // An adaptor that gathers elements up in pairs
    /// let pit = (0..4).batching(|mut it| {
    ///            match it.next() {
    ///                None => None,
    ///                Some(x) => match it.next() {
    ///                    None => None,
    ///                    Some(y) => Some((x, y)),
    ///                }
    ///            }
    ///        });
    ///
    /// assert!(itertools::equal(pit, vec![(0, 1), (2, 3)]));
    /// ```
    ///
    fn batching<B, F>(self, f: F) -> Batching<Self, F> where
        F: FnMut(&mut Self) -> Option<B>,
        Self: Sized,
    {
        Batching::new(self, f)
    }

    /// Group iterator elements. Consecutive elements that map to the same key (“runs”),
    /// are returned as the iterator elements of **GroupBy**.
    ///
    /// Iterator element type is **(K, Vec\<Self::Item\>)**
    fn group_by<K, F: FnMut(&Self::Item) -> K>(self, key: F) -> GroupBy<K, Self, F> where
        Self: Sized,
    {
        GroupBy::new(self, key)
    }

    /// Split into an iterator pair that both yield all elements from
    /// the original iterator.
    ///
    /// **Note:** If the iterator is clonable, prefer using that instead
    /// of using this method. It is likely to be more efficient.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// ## Example
    /// ```
    /// use itertools::Itertools;
    /// let xs = vec![0, 1, 2, 3];
    ///
    /// let (mut t1, mut t2) = xs.into_iter().tee();
    /// assert_eq!(t1.next(), Some(0));
    /// assert_eq!(t1.next(), Some(1));
    /// assert_eq!(t2.next(), Some(0));
    /// assert_eq!(t1.next(), Some(2));
    /// assert_eq!(t1.next(), Some(3));
    /// assert_eq!(t1.next(), None);
    /// assert_eq!(t2.next(), Some(1));
    /// ```
    fn tee(self) -> (Tee<Self>, Tee<Self>) where
        Self: Sized,
        Self::Item: Clone
    {
        tee::new(self)
    }

    /// Return a sliced iterator.
    ///
    /// **Note:** slicing an iterator is not constant time, and much less efficient than
    /// slicing for example a vector.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// ## Example
    /// ```
    /// use std::iter::repeat;
    /// use itertools::Itertools;
    ///
    /// let it = repeat('a').slice(..3);
    /// assert_eq!(it.count(), 3);
    /// ```
    fn slice<R>(self, range: R) -> ISlice<Self> where
        R: misc::GenericRange,
        Self: Sized,
    {
        ISlice::new(self, range)
    }

    /// Return an iterator inside a **Rc\<RefCell\<_\>\>** wrapper.
    ///
    /// The returned **RcIter** can be cloned, and each clone will refer back to the
    /// same original iterator.
    ///
    /// **RcIter** allows doing interesting things like using **.zip()** on an iterator with
    /// itself, at the cost of runtime borrow checking.
    /// (If it is not obvious: this has a performance penalty.)
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut rit = (0..9).into_rc();
    /// let mut z = rit.clone().zip(rit.clone());
    /// assert_eq!(z.next(), Some((0, 1)));
    /// assert_eq!(z.next(), Some((2, 3)));
    /// assert_eq!(z.next(), Some((4, 5)));
    /// assert_eq!(rit.next(), Some(6));
    /// assert_eq!(z.next(), Some((7, 8)));
    /// assert_eq!(z.next(), None);
    /// ```
    ///
    /// **Panics** in iterator methods if a borrow error is encountered,
    /// but it can only happen if the RcIter is reentered in for example **.next()**,
    /// i.e. if it somehow participates in an “iterator knot” where it is an adaptor of itself.
    fn into_rc(self) -> RcIter<Self> where
        Self: Sized,
    {
        RcIter::new(self)
    }

    /// Return an iterator adaptor that steps **n** elements in the base iterator
    /// for each iteration.
    ///
    /// The iterator steps by yielding the next element from the base iterator,
    /// then skipping forward **n - 1** elements.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// **Panics** if the step is 0.
    ///
    /// ## Example
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (0..8).step(3);
    /// assert!(itertools::equal(it, vec![0, 3, 6]));
    /// ```
    fn step(self, n: usize) -> Step<Self> where
        Self: Sized,
    {
        Step::new(self, n)
    }

    /// Return an iterator adaptor that merges the two base iterators in ascending order.
    /// If both base iterators are sorted (ascending), the result is sorted.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// ## Example
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a = (0..11).step(3);
    /// let b = (0..11).step(5);
    /// let it = a.merge(b);
    /// assert!(itertools::equal(it, vec![0, 0, 3, 5, 6, 9, 10]));
    /// ```
    fn merge<J>(self, other: J) -> MergeAscend<Self, J::IntoIter> where
        Self: Sized,
        Self::Item: PartialOrd,
        J: IntoIterator<Item=Self::Item>,
    {
        fn wrapper<A: PartialOrd>(a: &A, b: &A) -> Ordering {
            a.partial_cmp(b).unwrap_or(Ordering::Less)
        };
        self.merge_by(other, wrapper)
    }

    /// Return an iterator adaptor that merges the two base iterators in order.
    /// This is much like *.merge()* but allows for a custom ordering.
    ///
    /// This can be especially useful for sequences of tuples.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// ## Example
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a = (0..).zip("bc".chars());
    /// let b = (0..).zip("ad".chars());
    /// let it = a.merge_by(b, |x, y| x.1.cmp(&y.1));
    /// assert!(itertools::equal(it, vec![(0, 'a'), (0, 'b'), (1, 'c'), (1, 'd')]));
    /// ```

    fn merge_by<J, F>(self, other: J, cmp: F) -> Merge<Self, J::IntoIter, F> where
        Self: Sized,
        J: IntoIterator<Item=Self::Item>,
        F: FnMut(&Self::Item, &Self::Item) -> Ordering
    {
        Merge::new(self, other.into_iter(), cmp)
    }

    /// Return an iterator adaptor that iterates over the cartesian product of
    /// the element sets of two iterators **self** and **J**.
    ///
    /// Iterator element type is **(Self::Item, J::Item)**.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (0..2).cartesian_product("αβ".chars());
    /// assert!(itertools::equal(it, vec![(0, 'α'), (0, 'β'), (1, 'α'), (1, 'β')]));
    /// ```
    fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter> where
        Self: Sized,
        Self::Item: Clone,
        J: IntoIterator,
        J::IntoIter: Clone,
    {
        Product::new(self, other.into_iter())
    }

    /// Return an iterator adaptor that enumerates the iterator elements,
    /// starting from **start** and incrementing by one.
    ///
    /// Iterator element type is **(K, Self::Item)**.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!(
    ///     "αβγ".chars().enumerate_from(-10i8).collect_vec(),
    ///     [(-10, 'α'), (-9, 'β'), (-8, 'γ')]
    /// );
    /// ```
    #[cfg(feature = "unstable")]
    fn enumerate_from<K>(self, start: K) -> EnumerateFrom<Self, K> where
        Self: Sized,
    {
        EnumerateFrom::new(self, start)
    }

    /// Return an iterator adapter that allows peeking multiple values.
    ///
    /// After a call to *.next()* the peeking cursor is reset.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let nums = vec![1u8,2,3,4,5];
    /// let mut peekable = nums.into_iter().multipeek();
    /// assert_eq!(peekable.peek(), Some(&1));
    /// assert_eq!(peekable.peek(), Some(&2));
    /// assert_eq!(peekable.peek(), Some(&3));
    /// assert_eq!(peekable.next(), Some(1));
    /// assert_eq!(peekable.peek(), Some(&2));
    /// ```
    fn multipeek(self) -> MultiPeek<Self> where
        Self: Sized
    {
        MultiPeek::new(self)
    }

    /// Return an iterator adaptor that uses the passed-in closure to
    /// optionally merge together consecutive elements. For each pair the closure
    /// is passed the latest two elements, `x`, `y` and may return either `Ok(z)`
    /// to merge the two values or `Err((x, y))` to indicate they can't be merged.
    ///
    /// *.dedup()* and *.mend_slices()* are specializations of the coalesce
    /// adaptor.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// This iterator is *fused*.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sum same-sign runs together
    /// let data = vec![-1., -2., -3., 3., 1., 0., -1.];
    /// assert!(itertools::equal(data.into_iter().coalesce(|x, y|
    ///         if (x >= 0.) == (y >= 0.) {
    ///             Ok(x + y)
    ///         } else {
    ///             Err((x, y))
    ///         }),
    ///         vec![-6., 4., -1.]));
    /// ```
    fn coalesce<F>(self, f: F) -> Coalesce<Self, F> where
        Self: Sized,
        F: FnMut(Self::Item, Self::Item) -> Result<Self::Item, (Self::Item, Self::Item)>
    {
        Coalesce::new(self, f)
    }

    /// Remove duplicates from sections of consecutive identical elements.
    /// If the iterator is sorted, all elements will be unique.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// This iterator is *fused*.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![1., 1., 2., 3., 3., 2., 2.];
    /// assert!(itertools::equal(data.into_iter().dedup(),
    ///                          vec![1., 2., 3., 2.]));
    /// ```
    fn dedup(self) -> CoalesceFn<Self> where
        Self: Sized,
        Self::Item: PartialEq,
    {
        fn eq<T: PartialEq>(x: T, y: T) -> Result<T, (T, T)>
        {
            if x == y { Ok(x) } else { Err((x, y)) }
        }
        Coalesce::new(self, eq)
    }


    /// Return an iterator adaptor that joins together adjacent slices if possible.
    ///
    /// Only implemented for iterators with slice or string slice elements.
    /// Only slices that are contiguous together can be joined.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let text = String::from("let there be text");
    /// let excerpts = vec![&text[0..4], &text[4..9], &text[10..12], &text[12..]];
    ///
    /// assert!(itertools::equal(excerpts.into_iter().mend_slices(),
    ///                          vec!["let there", "be text"]));
    /// ```
    fn mend_slices(self) -> CoalesceFn<Self> where
        Self: Sized,
        Self::Item: misc::MendSlice
    {
        fn mend<T: misc::MendSlice>(x: T, y: T) -> Result<T, (T, T)>
        {
            match misc::MendSlice::mend(x, y) {
                Some(z) => Ok(z),
                None => Err((x, y)),
            }
        }
        Coalesce::new(self, mend)
    }

    /// Return an iterator adaptor that borrows from a **Clone**-able iterator
    /// to only pick off elements while the predicate **f** returns **true**.
    ///
    /// It uses the **Clone** trait to restore the original iterator so that the last
    /// and rejected element is still available when **TakeWhileRef** is done.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut alphanumerics = "abcdef012345".chars();
    ///
    /// let alphas = alphanumerics.take_while_ref(|c| c.is_alphabetic())
    ///                           .collect::<String>();
    /// assert_eq!(alphas, "abcdef");
    /// assert_eq!(alphanumerics.next(), Some('0'));
    ///
    /// ```
    fn take_while_ref<'a, F>(&'a mut self, f: F) -> TakeWhileRef<'a, Self, F> where
        Self: Clone,
        F: FnMut(&Self::Item) -> bool,
    {
        TakeWhileRef::new(self, f)
    }

    /// Like regular *.map()*, specialized to using a simple function pointer instead,
    /// so that the resulting **Map** iterator value can be cloned.
    ///
    /// Iterator element type is **B**.
    fn map_fn<B>(self, f: fn(Self::Item) -> B) -> MapFn<Self, B> where
        Self: Sized
    {
        self.map(f)
    }

    /// **Deprecated:** Use *.map_fn()* instead.
    fn fn_map<B>(self, map: fn(Self::Item) -> B) -> FnMap<B, Self> where
        Self: Sized
    {
        FnMap::new(self, map)
    }


    // non-adaptor methods

    /// Find the position and value of the first element satisfying a predicate.
    fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)> where
        P: FnMut(&Self::Item) -> bool,
    {
        let mut index = 0usize;
        for elt in self {
            if pred(&elt) {
                return Some((index, elt))
            }
            index += 1;
        }
        None
    }

    /// Consume the first **n** elements of the iterator eagerly.
    ///
    /// Return actual number of elements consumed,
    /// until done or reaching the end.
    fn dropn(&mut self, mut n: usize) -> usize
    {
        let start = n;
        while n > 0 {
            match self.next() {
                Some(..) => n -= 1,
                None => break
            }
        }
        start - n
    }

    /// Consume the first **n** elements from the iterator eagerly,
    /// and return the same iterator again.
    ///
    /// It works similarly to **.skip(n)** except it is eager and
    /// preserves the iterator type.
    fn dropping(mut self, n: usize) -> Self where
        Self: Sized,
    {
        self.dropn(n);
        self
    }

    /// Consume the last **n** elements from the iterator eagerly,
    /// and return the same iterator again.
    ///
    /// This is only possible on double ended iterators. **n** may be
    /// larger than the number of elements.
    ///
    /// Note: This method is eager, dropping the back elements immediately and
    /// preserves the iterator type.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1);
    /// assert!(itertools::equal(init, vec![0, 3, 6]));
    /// ```
    fn dropping_back(mut self, n: usize) -> Self where
        Self: Sized,
        Self: DoubleEndedIterator,
    {
        self.by_ref().rev().dropn(n);
        self
    }

    /// Run the closure **f** eagerly on each element of the iterator.
    ///
    /// Consumes the iterator until its end.
    ///
    /// ## Example
    ///
    /// ```
    /// use std::sync::mpsc::channel;
    /// use itertools::Itertools;
    ///
    /// let (tx, rx) = channel();
    ///
    /// // use .foreach() to apply a function to each value -- sending it
    /// (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } );
    ///
    /// drop(tx);
    ///
    /// assert!(itertools::equal(rx.iter(), vec![1, 3, 5, 7, 9]));
    /// ```
    fn foreach<F>(&mut self, mut f: F) where
        F: FnMut(Self::Item),
    {
        for elt in self { f(elt) }
    }

    /// **.collect_vec()** is simply a type specialization of **.collect()**,
    /// for convenience.
    fn collect_vec(self) -> Vec<Self::Item> where
        Self: Sized,
    {
        self.collect()
    }

    /// Assign to each reference in **self** from the **from** iterator,
    /// stopping at the shortest of the two iterators.
    ///
    /// The **from** iterator is queried for its next element before the **self**
    /// iterator, and if either is exhausted the method is done.
    ///
    /// Return the number of elements written.
    ///
    /// ## Example
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut xs = [0; 4];
    /// xs.iter_mut().set_from(1..);
    /// assert_eq!(xs, [1, 2, 3, 4]);
    /// ```
    #[inline]
    fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize where
        Self: Iterator<Item=&'a mut A>,
        J: IntoIterator<Item=A>,
    {
        let mut count = 0;
        for elt in from {
            match self.next() {
                None => break,
                Some(ptr) => *ptr = elt
            }
            count += 1;
        }
        count
    }

    /// Combine all iterator elements into one String, seperated by **sep**.
    ///
    /// Use the **Display** implementation of each element.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!(["a", "b", "c"].iter().join(", "), "a, b, c");
    /// assert_eq!([1, 2, 3].iter().join(", "), "1, 2, 3");
    /// ```
    fn join(&mut self, sep: &str) -> String where
        Self::Item: std::fmt::Display,
    {
        match self.next() {
            None => String::new(),
            Some(first_elt) => {
                // estimate lower bound of capacity needed
                let (lower, _) = self.size_hint();
                let mut result = String::with_capacity(sep.len() * lower);
                write!(&mut result, "{}", first_elt).unwrap();
                for elt in self {
                    result.push_str(sep);
                    write!(&mut result, "{}", elt).unwrap();
                }
                result
            }
        }
    }

    /// Fold **Result** values from an iterator.
    ///
    /// Only **Ok** values are folded. If no error is encountered, the folded
    /// value is returned inside **Ok**. Otherwise, the operation terminates
    /// and returns the first **Err** value it encounters. No iterator elements are
    /// consumed after the first error.
    ///
    /// The first accumulator value is the **start** parameter.
    /// Each iteration passes the accumulator value and the next value inside **Ok**
    /// to the fold function **f** and its return value becomes the new accumulator value.
    ///
    /// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a
    /// computation like this:
    ///
    /// ```ignore
    /// let mut accum = start;
    /// accum = f(accum, 1);
    /// accum = f(accum, 2);
    /// accum = f(accum, 3);
    /// ```
    ///
    /// With a **start** value of 0 and an addition as folding function,
    /// this effetively results in *((0 + 1) + 2) + 3*
    ///
    /// ## Example
    ///
    /// ```
    /// use std::ops::Add;
    /// use itertools::Itertools;
    ///
    /// let values = [1, 2, -2, -1, 2, 1];
    /// assert_eq!(
    ///     values.iter()
    ///         .map(Ok::<_, ()>)
    ///         .fold_results(0, Add::add),
    ///     Ok(3)
    /// );
    /// assert!(
    ///     values.iter()
    ///         .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number") })
    ///         .fold_results(0, Add::add)
    ///         .is_err()
    /// );
    /// ```
    fn fold_results<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E> where
        Self: Iterator<Item=Result<A, E>>,
        F: FnMut(B, A) -> B,
    {
        for elt in self {
            match elt {
                Ok(v) => start = f(start, v),
                Err(u) => return Err(u),
            }
        }
        Ok(start)
    }

    /// Accumulator of the elements in the iterator.
    ///
    /// Like *.fold()*, without a base case. If the iterator is
    /// empty, return **None**. With just one element, return it.
    /// Otherwise elements are accumulated in sequence using the closure **f**.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45);
    /// assert_eq!((0..0).fold1(|x, y| x * y), None);
    /// ```
    fn fold1<F>(&mut self, mut f: F) -> Option<Self::Item> where
        F: FnMut(Self::Item, Self::Item) -> Self::Item,
    {
        match self.next() {
            None => None,
            Some(mut x) => {
                for y in self {
                    x = f(x, y);
                }
                Some(x)
            }
        }
    }

    /// Tell if the iterator is empty or not according to its size hint.
    /// Return **None** if the size hint does not tell, or return a **Some**
    /// value with the emptiness if it's possible to tell.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!((1..1).is_empty_hint(), Some(true));
    /// assert_eq!([1, 2, 3].iter().is_empty_hint(), Some(false));
    /// assert_eq!((0..10).filter(|&x| x > 0).is_empty_hint(), None);
    /// ```
    fn is_empty_hint(&self) -> Option<bool>
    {
        let (low, opt_hi) = self.size_hint();
        // check for erronous hint
        if let Some(hi) = opt_hi {
            if hi < low { return None }
        }

        if opt_hi == Some(0) {
            Some(true)
        } else if low > 0 {
            Some(false)
        } else {
            None
        }
    }
}

/// Return **true** if both iterators produce equal sequences
/// (elements pairwise equal and sequences of the same length),
/// **false** otherwise.
///
/// ## Example
///
/// ```
/// assert!(itertools::equal(vec![1, 2, 3], 1..4));
/// assert!(!itertools::equal(&[0, 0], &[0, 0, 0]));
/// ```
pub fn equal<I, J>(a: I, b: J) -> bool where
    I: IntoIterator,
    J: IntoIterator,
    I::Item: PartialEq<J::Item>,
{
    let mut ia = a.into_iter();
    let mut ib = b.into_iter();
    loop {
        match (ia.next(), ib.next()) {
            (Some(ref x), Some(ref y)) if x == y => { }
            (None, None) => return true,
            _ => return false,
        }
    }
}

/// Partition a sequence using predicate **pred** so that elements
/// that map to **true** are placed before elements which map to **false**.
///
/// The order within the partitions is arbitrary.
///
/// Return the index of the split point.
///
/// ## Example
///
/// ```
/// use itertools::partition;
///
/// let mut data = [7, 1, 1, 9, 1, 1, 3];
/// let split_index = partition(&mut data, |elt| *elt >= 3);
///
/// assert_eq!(data, [7, 3, 9, 1, 1, 1, 1]);
/// assert_eq!(split_index, 3);
/// ```
pub fn partition<'a, T: 'a, I, F>(it: I, mut pred: F) -> usize where
    I: IntoIterator<Item=&'a mut T>,
    I::IntoIter: DoubleEndedIterator,
    F: FnMut(&T) -> bool,
{
    let mut split_index = 0;
    let mut it = it.into_iter();
    'main: while let Some(front) = it.next() {
        if !pred(&*front) {
            loop {
                if let Some(back) = it.next_back() {
                    if pred(&*back) {
                        std::mem::swap(front, back);
                        break;
                    }
                } else {
                    break 'main;
                }
            }
        }
        split_index += 1;
    }
    split_index
}


impl<T: ?Sized> Itertools for T where T: Iterator { }