1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
//! Iterators that are sources (produce elements from parameters,
//! not from another iterator).

/// An iterator source that produces elements indefinitely by calling
/// a given closure.
///
/// Iterator element type is the return type of the closure.
///
/// ```
/// use itertools::RepeatCall;
///
/// itertools::assert_equal(
///     RepeatCall::new(|| "A".to_string()).take(5),
///     vec!["A", "A", "A", "A", "A"]
/// );
///
/// let mut x = 1;
/// itertools::assert_equal(
///     RepeatCall::new(|| { x = -x; x }).take(5),
///     vec![-1, 1, -1, 1, -1]
/// );
/// ```
pub struct RepeatCall<F> {
    f: F,
}

impl<F> RepeatCall<F>
{
    /// Create a new `RepeatCall` from a closure.
    pub fn new<A>(func: F) -> Self where
        F: FnMut() -> A,
    {
        RepeatCall { f: func }
    }
}

impl<A, F> Iterator for RepeatCall<F> where
    F: FnMut() -> A,
{
    type Item = A;

    #[inline]
    fn next(&mut self) -> Option<A>
    {
        Some((self.f)())
    }

    fn size_hint(&self) -> (usize, Option<usize>)
    {
        (usize::max_value(), None)
    }
}

impl<A, F> DoubleEndedIterator for RepeatCall<F> where
    F: FnMut() -> A,
{
    #[inline]
    fn next_back(&mut self) -> Option<A> { self.next() }
}


/// `Unfold` is a general iterator builder: it has a mutable state value,
/// and a closure with access to the state that produces the next value.
///
/// This more or less equivalent to a regular struct with an `Iterator`
/// implementation, and is useful for one-off iterators.
///
/// ```
/// // an iterator that yields sequential Fibonacci numbers,
/// // and stops at the maximum representable value.
///
/// use itertools::Unfold;
///
/// let mut fibonacci = Unfold::new((1_u32, 1_u32), |state| {
///     let (ref mut x1, ref mut x2) = *state;
///
///     // Attempt to get the next Fibonacci number
///     let next = x1.saturating_add(*x2);
///
///     // Shift left: ret <- x1 <- x2 <- next
///     let ret = *x1;
///     *x1 = *x2;
///     *x2 = next;
///
///     // If addition has saturated at the maximum, we are finished
///     if ret == *x1 && ret > 1 {
///         return None;
///     }
///
///     Some(ret)
/// });
///
/// itertools::assert_equal(fibonacci.by_ref().take(8),
///                         vec![1, 1, 2, 3, 5, 8, 13, 21]);
/// assert_eq!(fibonacci.last(), Some(2_971_215_073))
/// ```
#[derive(Clone)]
pub struct Unfold<St, F> {
    f: F,
    /// Internal state that will be passed to the closure on the next iteration
    pub state: St,
}

impl<A, St, F> Unfold<St, F>
    where F: FnMut(&mut St) -> Option<A>
{
    /// Creates a new iterator with the specified closure as the "iterator
    /// function" and an initial state to eventually pass to the closure
    #[inline]
    pub fn new(initial_state: St, f: F) -> Unfold<St, F> {
        Unfold {
            f: f,
            state: initial_state
        }
    }
}

impl<A, St, F> Iterator for Unfold<St, F>
    where F: FnMut(&mut St) -> Option<A>
{
    type Item = A;

    #[inline]
    fn next(&mut self) -> Option<A> {
        (self.f)(&mut self.state)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        // no possible known bounds at this point
        (0, None)
    }
}