1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
#![cfg_attr(feature = "unstable", feature(core, zero_one))]
#![crate_name="itertools"]

//! Itertools — extra iterator adaptors, functions and macros
//!
//! To use the iterator methods in this crate, import the [**Itertools** trait](./trait.Itertools.html):
//!
//! ```ignore
//! use itertools::Itertools;
//! ```
//!
//! Some adaptors are just used directly like regular structs,
//! for example [**PutBack**](./struct.PutBack.html), [**Zip**](./struct.Zip.html), [**Stride**](./struct.Stride.html), [**StrideMut**](./struct.StrideMut.html).
//!
//! To use the macros in this crate, use the `#[macro_use]` attribute:
//!
//! ```ignore
//! #[macro_use]
//! extern crate itertools;
//! ```
//!
//! ## License
//! Dual-licensed to be compatible with the Rust project.
//!
//! Licensed under the Apache License, Version 2.0
//! http://www.apache.org/licenses/LICENSE-2.0 or the MIT license
//! http://opensource.org/licenses/MIT, at your
//! option. This file may not be copied, modified, or distributed
//! except according to those terms.
//!
//!

use std::fmt::Write;

pub use adaptors::{
    Interleave,
    Product,
    PutBack,
    FnMap,
    Dedup,
    Batching,
    GroupBy,
    Step,
    Merge,
    MultiPeek,
};
#[cfg(feature = "unstable")]
pub use adaptors::EnumerateFrom;
pub use intersperse::Intersperse;
pub use islice::{ISlice};
pub use rciter::RcIter;
pub use stride::Stride;
pub use stride::StrideMut;
pub use tee::Tee;
pub use times::Times;
pub use times::times;
pub use linspace::{linspace, Linspace};
pub use zip::{ZipLongest, EitherOrBoth};
pub use ziptuple::{Zip};
#[cfg(feature = "unstable")]
pub use ziptrusted::{ZipTrusted, TrustedIterator};
mod adaptors;
mod intersperse;
mod islice;
mod linspace;
pub mod misc;
mod rciter;
mod stride;
mod tee;
mod times;
mod zip;
mod ziptuple;
#[cfg(feature = "unstable")]
mod ziptrusted;

#[macro_export]
/// Create an iterator over the “cartesian product” of iterators.
///
/// Iterator element type is like **(A, B, ..., E)** if formed
/// from iterators **(I, J, ..., M)** with element types **I::Item = A**, **J::Item = B**, etc.
///
/// ## Example
///
/// ```ignore
/// #[macro_use]
/// extern crate itertools;
/// # fn main() {
/// // Iterate over the coordinates of a 4 x 4 x 4 grid
/// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3)
/// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) {
///    // ..
/// }
/// # }
/// ```
macro_rules! iproduct {
    ($I:expr) => (
        ($I)
    );
    ($I:expr, $J:expr) => (
        {
            let it = $crate::Product::new($I, $J);
            it
        }
    );
    ($I:expr, $J:expr, $($K:expr),+) => (
        {
            let it = $crate::Product::new($I, $J);
            $(
                let it = $crate::misc::FlatTuples::new($crate::Product::new(it, $K));
            )*
            it
        }
    );
}

#[macro_export]
/// **Deprecated: use *Zip::new* instead.**
///
/// Create an iterator running multiple iterators in lockstep.
///
/// The izip! iterator yields elements until any subiterator
/// returns `None`.
///
/// Iterator element type is like `(A, B, ..., E)` if formed
/// from iterators `(I, J, ..., M)` implementing `I: Iterator<A>`,
/// `J: Iterator<B>`, ..., `M: Iterator<E>`
///
/// ## Example
///
/// ```ignore
/// // Iterate over three sequences side-by-side
/// let mut xs = [0, 0, 0];
/// let ys = [72, 73, 74];
/// for (i, a, b) in izip!(0..100, xs.mut_iter(), ys.iter()) {
///    *a = i ^ *b;
/// }
/// ```
macro_rules! izip {
    ($I:expr) => (
        ($I)
    );
    (($I:expr),*) => (
        {
            $crate::Zip::new(($I),*)
        }
    );
}

/// `icompr` as in “iterator comprehension” allows creating a
/// mapped iterator with simple syntax, similar to set builder notation,
/// and directly inspired by Python. Supports an optional filter clause.
///
/// Syntax:
///
///  `icompr!(<expression>, <pattern>, <iterator>)`
///
/// or
///
///  `icompr!(<expression>, <pattern>, <iterator>, <expression>)`
///
/// Each element from the `<iterator>` expression is pattern matched
/// with the `<pattern>`, and the bound names are used to express the
/// mapped-to value.
///
/// Iterator element type is the type of `<expression>`
///
/// ## Example
///
/// ```ignore
/// let mut squares = icompr!(x * x, x, 1..100);
/// ```
///
/// **Note:** A Python like syntax of `<expression> for <pattern> in <iterator>` is
/// **not possible** with the stable macro rules since Rust 1.0.0-alpha.
#[macro_export]
macro_rules! icompr {
    ($r:expr, $x:pat, $J:expr, $pred:expr) => (
        ($J).filter_map(|$x| if $pred { Some($r) } else { None })
    );
    ($r:expr, $x:pat, $J:expr) => (
        ($J).filter_map(|$x| Some($r))
    );
}

/// Extra iterator methods for arbitrary iterators
pub trait Itertools : Iterator {
    // adaptors

    /// Like regular *.map()*, but using a simple function pointer instead,
    /// so that the resulting **FnMap** iterator value can be cloned.
    ///
    /// Iterator element type is **B**.
    fn fn_map<B>(self, map: fn(Self::Item) -> B) -> FnMap<B, Self> where
        Self: Sized
    {
        FnMap::new(self, map)
    }

    /// Alternate elements from two iterators until both
    /// are run out
    ///
    /// Iterator element type is **Self::Item**.
    fn interleave<J>(self, other: J) -> Interleave<Self, J> where
        J: Iterator<Item=Self::Item>,
        Self: Sized
    {
        Interleave::new(self, other)
    }

    /// An iterator adaptor to insert a particular value
    /// between each element of the adapted iterator.
    ///
    /// Iterator element type is **Self::Item**.
    fn intersperse(self, element: Self::Item) -> Intersperse<Self> where
        Self: Sized,
        Self::Item: Clone
    {
        Intersperse::new(self, element)
    }

    /// Creates an iterator which iterates over both this and the specified
    /// iterators simultaneously, yielding pairs of two optional elements.
    /// When both iterators return None, all further invocations of next() will
    /// return None.
    ///
    /// # Example
    ///
    /// ```rust
    /// use itertools::EitherOrBoth::{Both, Right};
    /// use itertools::Itertools;
    /// let mut it = (0..1).zip_longest(1..3);
    /// assert_eq!(it.next(), Some(Both(0, 1)));
    /// assert_eq!(it.next(), Some(Right(2)));
    /// assert_eq!(it.next(), None);
    /// ```
    ///
    /// Iterator element type is **EitherOrBoth\<Self::Item, B\>**.
    #[inline]
    fn zip_longest<U>(self, other: U) -> ZipLongest<Self, U> where
        U: Iterator,
        Self: Sized,
    {
        ZipLongest::new(self, other)
    }

    /// Remove duplicates from sections of consecutive identical elements.
    /// If the iterator is sorted, all elements will be unique.
    ///
    /// Iterator element type is **Self::Item**.
    fn dedup(self) -> Dedup<Self> where
        Self: Sized,
    {
        Dedup::new(self)
    }

    /// A “meta iterator adaptor”. Its closure recives a reference to the iterator
    /// and may pick off as many elements as it likes, to produce the next iterator element.
    ///
    /// Iterator element type is **B**.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    /// // An adaptor that gathers elements up in pairs
    /// let mut pit = (0..4).batching(|mut it| {
    ///            match it.next() {
    ///                None => None,
    ///                Some(x) => match it.next() {
    ///                    None => None,
    ///                    Some(y) => Some((x, y)),
    ///                }
    ///            }
    ///        });
    /// assert_eq!(pit.next(), Some((0, 1)));
    /// assert_eq!(pit.next(), Some((2, 3)));
    /// assert_eq!(pit.next(), None);
    /// ```
    ///
    fn batching<B, F: FnMut(&mut Self) -> Option<B>>(self, f: F) -> Batching<Self, F> where
        Self: Sized,
    {
        Batching::new(self, f)
    }

    /// Group iterator elements. Consecutive elements that map to the same key (“runs”),
    /// are returned as the iterator elements of **GroupBy**.
    ///
    /// Iterator element type is **(K, Vec\<Self::Item\>)**
    fn group_by<K, F: FnMut(&Self::Item) -> K>(self, key: F) -> GroupBy<K, Self, F> where
        Self: Sized,
    {
        GroupBy::new(self, key)
    }

    /// Split into an iterator pair that both yield all elements from
    /// the original iterator.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// ## Example
    /// ```
    /// use itertools::Itertools;
    /// let xs = vec![0, 1, 2, 3];
    ///
    /// let (mut t1, mut t2) = xs.into_iter().tee();
    /// assert_eq!(t1.next(), Some(0));
    /// assert_eq!(t1.next(), Some(1));
    /// assert_eq!(t2.next(), Some(0));
    /// assert_eq!(t1.next(), Some(2));
    /// assert_eq!(t1.next(), Some(3));
    /// assert_eq!(t1.next(), None);
    /// assert_eq!(t2.next(), Some(1));
    /// ```
    fn tee(self) -> (Tee<Self>, Tee<Self>) where
        Self: Sized,
        Self::Item: Clone
    {
        tee::new(self)
    }

    /// Return a sliced iterator.
    ///
    /// **Note:** slicing an iterator is not constant time, and much less efficient than
    /// slicing for example a vector.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// ## Example
    /// ```
    /// use std::iter::repeat;
    /// use itertools::Itertools;
    ///
    /// let mut it = repeat('a').slice(..3);
    /// assert_eq!(it.count(), 3);
    /// ```
    fn slice<R>(self, range: R) -> ISlice<Self> where
        R: misc::GenericRange,
        Self: Sized,
    {
        ISlice::new(self, range)
    }

    /// Return an iterator inside a **Rc\<RefCell\<_\>\>** wrapper.
    ///
    /// The returned **RcIter** can be cloned, and each clone will refer back to the
    /// same original iterator.
    ///
    /// **RcIter** allows doing interesting things like using **.zip()** on an iterator with
    /// itself, at the cost of runtime borrow checking.
    /// (If it is not obvious: this has a performance penalty.)
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut rit = (0..9).into_rc();
    /// let mut z = rit.clone().zip(rit.clone());
    /// assert_eq!(z.next(), Some((0, 1)));
    /// assert_eq!(z.next(), Some((2, 3)));
    /// assert_eq!(z.next(), Some((4, 5)));
    /// assert_eq!(rit.next(), Some(6));
    /// assert_eq!(z.next(), Some((7, 8)));
    /// assert_eq!(z.next(), None);
    /// ```
    ///
    /// **Panics** in iterator methods if a borrow error is encountered,
    /// but it can only happen if the RcIter is reentered in for example **.next()**,
    /// i.e. if it somehow participates in an "iterator knot" where it is an adaptor of itself.
    fn into_rc(self) -> RcIter<Self> where
        Self: Sized,
    {
        RcIter::new(self)
    }

    /// Return an iterator adaptor that steps **n** elements in the base iterator
    /// for each iteration.
    ///
    /// The iterator steps by yielding the next element from the base iterator,
    /// then skipping forward **n - 1** elements.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// **Panics** if the step is 0.
    ///
    /// ## Example
    /// ```
    /// # extern crate itertools;
    /// # fn main() {
    /// use itertools::Itertools;
    ///
    /// let mut it = (0..8).step(3);
    /// assert_eq!(it.next(), Some(0));
    /// assert_eq!(it.next(), Some(3));
    /// assert_eq!(it.next(), Some(6));
    /// assert_eq!(it.next(), None);
    /// # }
    /// ```
    fn step(self, n: usize) -> Step<Self> where
        Self: Sized,
    {
        Step::new(self, n)
    }

    /// Return an iterator adaptor that merges the two base iterators in ascending order.
    /// If both base iterators are sorted (ascending), the result is sorted.
    ///
    /// Iterator element type is **Self::Item**.
    ///
    /// ## Example
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a = (0..10).step(2);
    /// let b = (1..10).step(3);
    /// let mut it = a.merge(b);
    /// assert_eq!(it.next(), Some(0));
    /// assert_eq!(it.next(), Some(1));
    /// assert_eq!(it.next(), Some(2));
    /// assert_eq!(it.next(), Some(4));
    /// assert_eq!(it.next(), Some(4));
    /// assert_eq!(it.next(), Some(6));
    /// ```
    fn merge<J>(self, other: J) -> Merge<Self, J> where
        Self: Sized,
        Self::Item: PartialOrd,
        J: Iterator<Item=Self::Item>,
    {
        Merge::new(self, other)
    }

    /// Return an iterator adaptor that iterates over the cartesian product of
    /// the element sets of two iterators **self** and **J**.
    ///
    /// Iterator element type is **(Self::Item, J::Item)**.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut it = (0..2).cartesian_product("αβ".chars());
    /// assert_eq!(it.next(), Some((0, 'α')));
    /// assert_eq!(it.next(), Some((0, 'β')));
    /// assert_eq!(it.next(), Some((1, 'α')));
    /// assert_eq!(it.next(), Some((1, 'β')));
    /// assert_eq!(it.next(), None);
    /// ```
    fn cartesian_product<J>(self, other: J) -> Product<Self, J> where
        Self: Sized,
        Self::Item: Clone,
        J: Clone + Iterator,
    {
        Product::new(self, other)
    }

    /// Return an iterator adaptor that enumerates the iterator elements,
    /// starting from **start** and incrementing by one.
    ///
    /// Iterator element type is **(K, Self::Item)**.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!(
    ///     "αβγ".chars().enumerate_from(-10i8).collect_vec(),
    ///     [(-10, 'α'), (-9, 'β'), (-8, 'γ')]
    /// );
    /// ```
    #[cfg(feature = "unstable")]
    fn enumerate_from<K>(self, start: K) -> EnumerateFrom<Self, K> where
        Self: Sized,
    {
        EnumerateFrom::new(self, start)
    }

    /// Returns an iterator adapter that allows peeking multiple values.
    ///
    /// After a call to *.next()* the peeking cursor gets resetted.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let nums = vec![1u8,2,3,4,5];
    /// let mut peekable = nums.into_iter().multipeek();
    /// assert_eq!(peekable.peek(), Some(&1));
    /// assert_eq!(peekable.peek(), Some(&2));
    /// assert_eq!(peekable.peek(), Some(&3));
    /// assert_eq!(peekable.next(), Some(1));
    /// assert_eq!(peekable.peek(), Some(&2));
    /// ```
    fn multipeek(self) -> MultiPeek<Self> where
        Self: Sized
    {
        MultiPeek::new(self)
    }

    // non-adaptor methods

    /// Find the position and value of the first element satisfying a predicate.
    fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)> where
        P: FnMut(&Self::Item) -> bool,
    {
        let mut index = 0usize;
        for elt in self {
            if pred(&elt) {
                return Some((index, elt))
            }
            index += 1;
        }
        None
    }

    /// Consume the first **n** elements of the iterator eagerly.
    ///
    /// Return actual number of elements consumed,
    /// until done or reaching the end.
    fn dropn(&mut self, mut n: usize) -> usize {
        let start = n;
        while n > 0 {
            match self.next() {
                Some(..) => n -= 1,
                None => break
            }
        }
        start - n
    }

    /// Consume the first **n** elements from the iterator eagerly,
    /// and return the same iterator again.
    ///
    /// It works similarly to **.skip(n)** except it is eager and
    /// preserves the iterator type.
    fn dropping(mut self, n: usize) -> Self where
        Self: Sized,
    {
        self.dropn(n);
        self
    }

    /// **Deprecated: because of a name clash, use .count() or .foreach() instead as appropriate.**
    ///
    /// Run the iterator, eagerly, to the end and consume all its elements.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut cnt = 0;
    /// "hi".chars().map(|c| cnt += 1).drain();
    /// ```
    ///
    fn drain(&mut self)
    {
        for _ in self { /* nothing */ }
    }

    /// **Deprecated: Use *.foreach()* instead.**
    ///
    /// Run the closure **f** eagerly on each element of the iterator.
    ///
    /// Consumes the iterator until its end.
    fn apply<F>(&mut self, f: F) where
        F: FnMut(Self::Item),
    {
        self.foreach(f)
    }

    /// Run the closure **f** eagerly on each element of the iterator.
    ///
    /// Consumes the iterator until its end.
    fn foreach<F>(&mut self, mut f: F) where
        F: FnMut(Self::Item),
    {
        for elt in self { f(elt) }
    }

    /// **.collect_vec()** is simply a type specialization of **.collect()**,
    /// for convenience.
    fn collect_vec(self) -> Vec<Self::Item> where
        Self: Sized,
    {
        self.collect()
    }

    /// Assign to each reference in **self** from the **from** iterator,
    /// stopping at the shortest of the two iterators.
    ///
    /// Return the number of elements written.
    ///
    /// ## Example
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut xs = [0; 4];
    /// xs.iter_mut().set_from(1..);
    /// assert_eq!(xs, [1, 2, 3, 4]);
    /// ```
    #[inline]
    fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize where
        Self: Iterator<Item=&'a mut A>,
        J: Iterator<Item=A>,
    {
        let mut count = 0;
        for elt in from {
            match self.next() {
                None => break,
                Some(ptr) => *ptr = elt
            }
            count += 1;
        }
        count
    }

    /// **Deprecated: Use *.join()* instead, it's more efficient.**.
    ///
    /// Convert each element to String before joining them all together.
    ///
    /// Like *.join()*, but converts each element to **String** explicitly first.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!([1, 2, 3].iter().to_string_join(", "), "1, 2, 3");
    /// ```
    fn to_string_join(&mut self, sep: &str) -> String where
        Self::Item: ToString,
    {
        self.map(|elt| elt.to_string()).join(sep)
    }

    /// Combine all iterator elements into one String, seperated by **sep**.
    ///
    /// Use the **Display** implementation of each element.
    ///
    /// ## Example
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!(["a", "b", "c"].iter().join(", "), "a, b, c");
    /// assert_eq!([1, 2, 3].iter().join(", "), "1, 2, 3");
    /// ```
    fn join(&mut self, sep: &str) -> String where
        Self::Item: std::fmt::Display,
    {
        match self.next() {
            None => String::new(),
            Some(first_elt) => {
                // estimate lower bound of capacity needed
                let (lower, _) = self.size_hint();
                let mut result = String::with_capacity(sep.len() * lower);
                write!(&mut result, "{}", first_elt).unwrap();
                for elt in self {
                    result.push_str(sep);
                    write!(&mut result, "{}", elt).unwrap();
                }
                result
            }
        }
    }

    /// Fold **Result** values from an iterator.
    ///
    /// Only **Ok** values are folded. If no error is encountered, the folded
    /// value is returned inside **Ok**. Otherwise and the operation terminates
    /// and returns the first error it encounters. No iterator elements are 
    /// consumed after the first error.
    ///
    /// ## Example
    ///
    /// ```
    /// use std::ops::Add;
    /// use itertools::Itertools;
    ///
    /// let values = [1, 2, -2, -1, 2, 1];
    /// assert_eq!(
    ///     values.iter()
    ///         .map(Ok::<_, ()>)
    ///         .fold_results(0, Add::add),
    ///     Ok(3)
    /// );
    /// assert!(
    ///     values.iter()
    ///         .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number") })
    ///         .fold_results(0, Add::add)
    ///         .is_err()
    /// );
    /// ```
    fn fold_results<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E> where
        Self: Iterator<Item=Result<A, E>>,
        F: FnMut(B, A) -> B,
    {
        for elt in self {
            match elt {
                Ok(v) => start = f(start, v),
                Err(u) => return Err(u),
            }
        }
        Ok(start)
    }

}

impl<T: ?Sized> Itertools for T where T: Iterator { }

/// **Deprecated: Use *.set_from()* instead**.
///
/// Assign to each reference in `to` from `from`, stopping
/// at the shortest of the two iterators.
///
/// Return the number of elements written.
#[inline]
pub fn write<'a, A: 'a, I, J>(mut to: I, from: J) -> usize where
    I: Iterator<Item=&'a mut A>,
    J: Iterator<Item=A>
{
    let mut count = 0;
    for elt in from {
        match to.next() {
            None => break,
            Some(ptr) => *ptr = elt
        }
        count += 1;
    }
    count
}