1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
//! Compositional, pipes-style stream processing.
//!
//! This crate contains an abstraction layer for compositional processing pipelines, inspired by Rust's [`Iterator`](https://doc.rust-lang.org/stable/std/iter/trait.Iterator.html) and Haskell's [`pipes` library](https://hackage.haskell.org/package/pipes).
//!
//! The heart of this crate is the [`Pipe` trait](trait.Pipe.html). It has an input item type and an output item type, as well as the [`next` method](trait.Pipe.html#tymethod.next) to calculate the next output item from the next input item. Everything else is built upon this concept.
//!
//! The two main advantages of using `Pipe` over implementing pipelines "manually" is that granular pieces of pipe can be tested individually and combined into larger pipes; They improve the testability and reusability of the code.
//!
//! # Implementing `Pipe`
//!
//! Implementing `Pipe` is similar to implementing `Iterator`, but even more simple. Let's create pipe that multiplies every input item with a previously set factor:
//!
//! ```
//! use iterpipes::Pipe;
//! use std::ops::Mul;
//!
//! struct Multiply<V: Mul + Copy> {
//!     factor: V,
//! }
//!
//! impl<V: Mul + Copy> Pipe for Multiply<V> {
//!     type InputItem = V;
//!     type OutputItem = V::Output;
//!
//!     fn next(&mut self, input: V) -> V::Output {
//!         input * self.factor
//!     }
//! }
//!
//! let mut multiply: Multiply<u32> = Multiply { factor: 2 };
//!
//! assert_eq!(4, multiply.next(2));
//! assert_eq!(8, multiply.next(4));
//! ```
//!
//! # Decoration and Composition
//!
//! Once the individual and granular pipes are implemented and tested, they can be decorated and combined into big and complex pipelines. First, `Pipe` has many decorator methods, just like `Iterator`, which create a new pipe with new behavior that is based on the old one.
//!
//! Secondly, you can compose them using the `>>` operator. Prior to this, you have to turn the first pipe of the composition into a composable one using the [`compose` method](trait.Pipe.html#method.compose). Then, you can connect fitting pipes together into a big one.
//!
//! Let's reuse the `Multiply` pipe from above and apply it to a pulse wave generator:
//!
//! ```
//! use iterpipes::Pipe;
//! use std::ops::Mul;
//!
//! /// A pipe that multiplies any signal by a given factor.
//! struct Multiply<V: Mul + Copy> {
//!     factor: V,
//! }
//!
//! impl<V: Mul + Copy> Pipe for Multiply<V> {
//!     type InputItem = V;
//!     type OutputItem = V::Output;
//!
//!     #[inline]
//!     fn next(&mut self, input: V) -> V::Output {
//!         input * self.factor
//!     }
//! }
//!
//! /// A pipe that generates a square wave from a given index.
//! struct PulseWave {
//!     pulse_length: usize,
//! }
//!
//! impl Pipe for PulseWave {
//!     type InputItem = usize;
//!     type OutputItem = f32;
//!
//!     #[inline]
//!     fn next(&mut self, index: usize) -> f32 {
//!         // If the index is part of an even pulse, return 1.0 and -1.0 otherwise.
//!         if (index / self.pulse_length) % 2 == 0 {
//!             1.0
//!         } else {
//!             -1.0
//!         }
//!     }
//! }
//!
//! // Compose the two pipes into one.
//! let mut combined = PulseWave { pulse_length: 2 }.compose() >> Multiply { factor: 0.5 };
//!
//! for i in 0..32 {
//!     let frame = combined.next(i);
//!     if (i / 2) % 2 == 0 {
//!         assert_eq!(frame, 0.5);
//!     } else {
//!         assert_eq!(frame, -0.5);
//!     }
//! }
//! ```
//!
//! # Interoperability
//!
//! There are interoperability layers to use a `Pipe` as an `Iterator` and vice-versa. These are [`IterPipe`](struct.IterPipe.html) and [`PipeIter`](struct.PipeIter.html).
//!
//! Let's have an example that iterates over a slice, multiplies every value by two and collects it into a vector:
//!
//! ```
//! use iterpipes::{Pipe, Lazy, PipeIter};
//! use std::ops::Mul;
//!
//! /// A pipe that multiplies any signal by a given factor.
//! struct Multiply<V: Mul + Copy> {
//!     factor: V,
//! }
//!
//! impl<V: Mul + Copy> Pipe for Multiply<V> {
//!     type InputItem = V;
//!     type OutputItem = V::Output;
//!
//!     #[inline]
//!     fn next(&mut self, input: V) -> V::Output {
//!         input * self.factor
//!     }
//! }
//!
//! let input: Vec<usize> = (0..16).collect();
//!
//! // Create an iterator over the input.
//! let pipeline = input.iter().cloned();
//! // Turn it into a pipe.
//! let pipeline = PipeIter::new(pipeline).compose();
//! // Connect it to an optional version of the multiplication pipe.
//! let pipeline = pipeline >> Multiply { factor: 2}.optional();
//! // Turn the pipe back to an iterator.
//! let pipeline = pipeline.into_iter();
//!
//! // Collect and verify the results.
//! let result: Vec<usize> = pipeline.collect();
//! for i in 0..16 {
//!     assert_eq!(result[i], i*2);
//! }
//! ```
//!
//! # A note on performance
//!
//! Using pipes to express processing streams has side-effects on the performance. Since the resulting algorithm is created from many small functions instead of one big one, there is an overhead when these functions are called. It might also be harder for the compiler to use [SIMD instructions](https://en.wikipedia.org/wiki/SIMD).
//!
//! These effects are removed when the resulting binary (program, shared object or static library) is compiled with link-time optimizations turned on. This will lead to the linker evaluating the compiled program as a whole and optimizing and inlining across functions and even crates.
//!
//! These can be enabled by adding the following lines to your `Cargo.toml`:
//!
//! ``` toml
//! [profile.release]
//! lto = true
//!
//! [profile.bench]
//! lto = true
//! ```

/// An iterator-style pipe.
///
/// For more general information about pipes, please see the [module-level documentation](index.html).
pub trait Pipe {
    /// The type of input this pipe accepts.
    type InputItem;
    /// The type of output this pipe produces.
    type OutputItem;

    /// Calculate the next output item, based on an input item.
    fn next(&mut self, item: Self::InputItem) -> Self::OutputItem;

    /// Reset the state of the pipe.
    ///
    /// If implemented, this method resets the pipe to the state it had before the first output was retrieved. Since all decorator pipes of this crate implement it, it can be be used to reset the state of a whole pipeline without needing to constructing it again.
    ///
    /// If your pipe can't be reseted, you may use the `unimplemented!()` macro. However, you should note this behavior in your documentation!
    ///
    /// # Example
    ///
    /// ```
    /// use iterpipes::*;
    ///
    /// /// A pipe that counts up.
    /// struct Counter {
    ///     index: usize,
    /// }
    ///
    /// impl Pipe for Counter {
    ///     type InputItem = ();
    ///     type OutputItem = usize;
    ///
    ///     fn next(&mut self, _: ()) -> usize {
    ///         let output = self.index;
    ///         self.index += 1;
    ///         output
    ///     }
    ///
    ///     fn reset(&mut self) {
    ///         self.index = 0;
    ///     }
    /// }
    ///
    /// let mut counter = Counter { index: 0};
    /// assert_eq!(0, counter.next(()));
    /// assert_eq!(1, counter.next(()));
    /// counter.reset();
    /// assert_eq!(0, counter.next(()));
    /// assert_eq!(1, counter.next(()));
    /// ```
    fn reset(&mut self) {}

    /// Create a bypassed version of the pipe.
    ///
    /// The returned pipe clones the input item, calculates the next output item and returns both
    /// the copied input item and the output item.
    ///
    /// # Example
    ///
    /// ```
    /// use iterpipes::*;
    ///
    /// /// A pipe that rounds a floating point value to the nearest integer.
    /// struct Round;
    ///
    /// impl Pipe for Round {
    ///     type InputItem = f32;
    ///     type OutputItem = i32;
    ///
    ///     fn next(&mut self, input: f32) -> i32 {
    ///         input.round() as i32
    ///     }
    /// }
    ///
    /// let mut pipe = Round {}.bypass();
    /// assert_eq!((0.5, 1), pipe.next(0.5));
    /// assert_eq!((-2.2, -2), pipe.next(-2.2));
    /// ```
    fn bypass(self) -> Bypass<Self>
    where
        Self: Sized,
        Self::InputItem: Clone,
    {
        Bypass::new(self)
    }

    /// Create a composable pipe.
    ///
    /// Composable pipes implement the `>>` operator that concatenates pipes.
    ///
    /// # Example
    ///
    /// ```
    /// use iterpipes::*;
    ///
    /// /// A pipe that turns an index into a periodic progress value between 0.0 and 1.0.
    /// struct Progress {
    ///     period_length: usize,
    /// }
    ///
    /// impl Pipe for Progress {
    ///     type InputItem = usize;
    ///     type OutputItem = f32;
    ///
    ///     fn next(&mut self, index: usize) -> f32 {
    ///         (index % self.period_length) as f32 / self.period_length as f32
    ///     }
    /// }
    ///
    /// /// A pipe that turns a progress value into a square wave.
    /// struct SquareWave;
    ///
    /// impl Pipe for SquareWave {
    ///     type InputItem = f32;
    ///     type OutputItem = f32;
    ///
    ///     fn next(&mut self, progress: f32) -> f32 {
    ///         if progress < 0.5 {
    ///             -1.0
    ///         } else {
    ///             1.0
    ///         }
    ///     }
    /// }
    ///
    /// let mut pipe = PipeIter::new(0..).compose()
    ///     >> Lazy::new(|i: Option<usize>| i.unwrap())
    ///     >> Progress {period_length: 4}.compose()
    ///     >> SquareWave;
    ///
    /// for frame in &[-1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0] {
    ///     assert_eq!(*frame, pipe.next(()));
    /// }
    /// ```
    ///
    /// # A technical note
    ///
    /// The `Compose` struct is a workaround the fact that this crate can not implement the `Shr` trait (the `>>` operator) for every type that implements `Pipe` since `Shr` isn't a part of this crate. This patttern is known as [the newtype pattern](https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-the-newtype-pattern-to-implement-external-traits-on-external-types).
    fn compose(self) -> Composed<Self>
    where
        Self: Sized,
    {
        Composed::new(self)
    }

    /// Connect two pipes.
    ///
    /// The created pipe takes an input item for `self`, calculates the intermediate value and then uses it to calculate the output value of the `other` pipe.
    ///
    /// Obviously, the `InputItem` of `self` and the `OutputItem` of the `other` pipe have to match!
    ///
    /// # Example
    ///
    /// ```
    /// use iterpipes::*;
    ///
    /// /// A pipe that turns an index into a periodic progress value between 0.0 and 1.0.
    /// struct Progress {
    ///     period_length: usize,
    /// }
    ///
    /// impl Pipe for Progress {
    ///     type InputItem = usize;
    ///     type OutputItem = f32;
    ///
    ///     fn next(&mut self, index: usize) -> f32 {
    ///         (index % self.period_length) as f32 / self.period_length as f32
    ///     }
    /// }
    ///
    /// /// A pipe that turns a progress value into a square wave.
    /// struct SquareWave;
    ///
    /// impl Pipe for SquareWave {
    ///     type InputItem = f32;
    ///     type OutputItem = f32;
    ///
    ///     fn next(&mut self, progress: f32) -> f32 {
    ///         if progress < 0.5 {
    ///             -1.0
    ///         } else {
    ///             1.0
    ///         }
    ///     }
    /// }
    ///
    /// let mut pipe = Progress {period_length: 4}.connect(SquareWave);
    ///
    /// for (index, frame) in [-1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0].iter().enumerate() {
    ///     assert_eq!(*frame, pipe.next(index));
    /// }
    /// ```
    fn connect<O: Pipe<InputItem = Self::OutputItem>>(self, other: O) -> Connector<Self, O>
    where
        Self: Sized,
    {
        Connector::new(self, other)
    }

    /// Wrap the pipe into an iterator.
    ///
    /// For example, this can be used to iterate over a pipeline in a `for` loop. The input item needs to have a default value, since the iterator has to create it on it's own, and the output item must be an `Option`al value.
    ///
    /// # Example
    ///
    /// ```
    /// use iterpipes::*;
    ///
    /// /// An pipe/iterator over a slice.
    /// struct SlicePipe<'a, T> {
    ///     data: &'a [T],
    ///     index: usize,
    /// }
    ///
    /// impl<'a, T> Pipe for SlicePipe<'a, T> {
    ///     type InputItem = ();
    ///     type OutputItem = Option<&'a T>;
    ///
    ///     fn next(&mut self, _: ()) -> Option<&'a T> {
    ///         let value = self.data.get(self.index);
    ///         if value.is_some() {
    ///             self.index += 1;
    ///         }
    ///         value
    ///     }
    /// }
    ///
    /// const DATA: &[u32] = &[3, 2, 1];
    /// for (index, value) in (SlicePipe {data: DATA, index: 0}).into_iter().enumerate() {
    ///     assert_eq!(DATA[index], *value);
    /// }
    /// ```
    fn into_iter(self) -> IterPipe<Self>
    where
        Self::InputItem: Default,
        Self: Sized + Pipe<InputItem = ()>,
    {
        IterPipe::new(self)
    }

    /// Optionalize the pipe.
    ///
    /// The decorated pipe's input and output items are the optional versions of the original input and output items. If an input item is fed into the decorated pipe, it returns some output value, but if `None` is fed into the decorated pipe, `None` is returned.
    ///
    /// # Example
    ///
    /// ```
    /// use iterpipes::*;
    ///
    /// /// A pipe that multiplies an input item by a factor.
    /// struct Multiply<T>
    /// where
    ///     T: std::ops::Mul<T> + Copy
    /// {
    ///     factor: T,
    /// }
    ///
    /// impl<T> Pipe for Multiply<T>
    /// where
    ///     T: std::ops::Mul<T> + Copy
    /// {
    ///     type InputItem = T;
    ///     type OutputItem = T::Output;
    ///
    ///     fn next(&mut self, item: T) -> T::Output {
    ///         item * self.factor
    ///     }
    /// }
    ///
    /// let mut pipe = Multiply::<u32> { factor: 2 }.optional();
    ///
    /// assert_eq!(Some(4), pipe.next(Some(2)));
    /// assert_eq!(None, pipe.next(None));
    /// ```
    fn optional(self) -> Optional<Self>
    where
        Self: Sized,
    {
        Optional::new(self)
    }

    /// Enumerate the output items of a pipe.
    ///
    /// The decorated pipe will return a tuple of an index and the output item. The index starts from 0 and is counted up for every output item.
    ///
    /// # Example
    ///
    /// ```
    /// use iterpipes::*;
    ///
    /// /// A pipe that always returns a clone of the same value.
    /// struct DefaultPipe<T: Clone> {
    ///     value: T,
    /// }
    ///
    /// impl<T: Clone> Pipe for DefaultPipe<T> {
    ///     type InputItem = ();
    ///     type OutputItem = T;
    ///
    ///     fn next(&mut self, _: ()) -> T {
    ///         self.value.clone()
    ///     }
    /// }
    ///
    /// let mut pipe = DefaultPipe { value: 42u8 }.enumerate();
    /// assert_eq!((0, 42), pipe.next(()));
    /// assert_eq!((1, 42), pipe.next(()));
    /// assert_eq!((2, 42), pipe.next(()));
    /// ```
    fn enumerate(self) -> Enumerate<Self>
    where
        Self: Sized,
    {
        Enumerate::new(self)
    }

    /// Create a boxed trait object of the pipe.
    ///
    /// This might be useful to move pipes across API bounds since it hides the internal composition of the pipe.
    ///
    /// # Example
    ///
    /// ```
    /// use iterpipes::*;
    ///
    /// fn create_pipe() -> Box<dyn Pipe<InputItem = usize, OutputItem = usize>> {
    ///     Lazy::new(|i| i * 2).boxed()
    /// }
    ///
    /// let mut pipe = create_pipe();
    ///
    /// for i in 0..4 {
    ///     assert_eq!(i*2, pipe.next(i));
    /// }
    /// ```
    fn boxed(self) -> Box<dyn Pipe<InputItem = Self::InputItem, OutputItem = Self::OutputItem>>
    where
        Self: Sized + 'static,
    {
        Box::new(self)
    }
}

impl Pipe for () {
    type InputItem = ();
    type OutputItem = ();

    fn next(&mut self, _: ()) {}

    fn reset(&mut self) {}
}

impl<P0, P1> Pipe for (P0, P1)
where
    P0: Pipe,
    P1: Pipe,
{
    type InputItem = (P0::InputItem, P1::InputItem);
    type OutputItem = (P0::OutputItem, P1::OutputItem);

    fn next(
        &mut self,
        (p0_input, p1_input): (P0::InputItem, P1::InputItem),
    ) -> (P0::OutputItem, P1::OutputItem) {
        (self.0.next(p0_input), self.1.next(p1_input))
    }

    fn reset(&mut self) {
        self.0.reset();
        self.1.reset();
    }
}

impl<'a, P: Pipe + ?Sized> Pipe for &'a mut P {
    type InputItem = P::InputItem;
    type OutputItem = P::OutputItem;

    fn next(&mut self, input: P::InputItem) -> P::OutputItem {
        (*self).next(input)
    }

    fn reset(&mut self) {
        (*self).reset();
    }
}

mod util;
pub use util::*;

mod iter;
pub use iter::*;

mod composed;
pub use composed::*;

#[test]
fn trait_object() {
    let mut pipe: Box<dyn Pipe<InputItem = (), OutputItem = Option<usize>>> =
        PipeIter::new((0..42).map(|_| 42)).boxed();

    while let Some(i) = pipe.next(()) {
        assert_eq!(i, 42);
    }
}