1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
//! A module about advanced memory sharing during iteration

/// Iterates twice over the same collection
/// 
/// # Example
/// The following code
/// 
/// ```
/// use iterators_collection::share::DoubleIterator;
/// 
/// let mut array = [1, 2, 3, 4, 5];
/// let iter = DoubleIterator::new(&mut array);
/// 
/// for (i, j) in iter {
///     // Some code here
/// }
/// ```
/// 
/// Means the same as
/// 
/// ```
/// let array = [1, 2, 3, 4, 5];
/// for i in array.iter() {
///     for j in array.iter() {
///         // Some code here
///     }
/// }
/// ```
/// 
/// with some differences:
/// - i and j will never be the same with `DoubleIterator`
/// 
/// - you can safely iterate on a mutable slice with `DoubleIterator`
/// 
/// - i and j CANNOT be shared across threads because it is unsafe to increment the iterator in one thread while accessing one of these references from the other one. It may lead to a data race
/// 
/// - i and j are raw pointers and not references because the correct lifetime for the borrowed values is not known at compile time since a simple call to the `next` method may lead to a data race because two mutable references to the same object may exist
/// 
/// Since version 0.3.0, the preferred way to do it is to use the `safe_for_each` method because you can use this iterator without writting unsafe code
/// ```
/// use iterators_collection::share::DoubleIterator;
/// 
/// let mut array = [1, 2, 3, 4, 5];
/// let iter = DoubleIterator::new(&mut array);
/// 
/// iter.safe_for_each(|i, j| {
///     // Some code here
/// });
/// ```
pub struct DoubleIterator<'a, T> {
    slice: &'a mut [T],
    first: usize,
    second: usize,
}

impl<'a, T> DoubleIterator<'a, T> {
    /// Creates a `DoubleIterator` from a slice
    /// 
    /// # Panics
    /// Panics if `slice.len() < 2`
    pub fn new(slice: &'a mut [T]) -> Self {
        assert!(slice.len() >= 2);

        Self {
            slice,

            first: 0,
            second: 1,
        }
    }

    /// Returns a mutable pointer to the `index`th element of the borrowed slice
    /// 
    /// # Unsafety
    /// Indexes are not checked if the `debug_assert!`s are disabled
    /// 
    /// This pointer is unsafe to use
    unsafe fn nth_ptr(&mut self, index: usize) -> *mut T {
        debug_assert!(index < self.slice.len());
        self.slice.get_unchecked_mut(index) as *mut T
    }

    /// Increments the indexes `first` and `second` or returns Err
    fn increment(&mut self) -> Result<(), ()> {
        loop {
            // Increment
            self.second += 1;

            // Check for overflow
            if self.second == self.slice.len() {
                self.second = 0;
                self.first += 1;

                if self.first >= self.slice.len() {
                    return Err(());
                }
            }

            if self.first != self.second {
                return Ok(());
            }
        }
    }

    /// Runs the given closure in a safe context
    /// 
    /// # Example
    /// ```
    /// use iterators_collection::share::DoubleIterator;
    /// 
    /// let mut array = [1, 2, 3, 4, 5];
    /// let iter = DoubleIterator::new(&mut array);
    /// 
    /// iter.safe_for_each(|i, j| {
    ///     println!("Got i = {} and j = {}", i, j);
    ///     assert_ne!(i, j);
    /// });
    /// ```
    /// 
    /// # Notes
    /// Not like a legacy iteration using a `for` loop, i and j are references because it's safe to use in this context
    pub fn safe_for_each<F: Fn(&mut T, &mut T)>(self, callback: F) {
        for (i, j) in self {
            unsafe {
                callback(&mut *i, &mut *j);
            }
        }
    }

    /// Sets the position of the iterator
    /// 
    /// # Parameters
    /// `i` the position of the first pointer of the tuple returned by the `Iterator` trait's implementation
    /// 
    /// `j` the position of the second one
    /// 
    /// # Panics
    /// Panics if either `i` or `j` are out of range (greater or equal to `slice.len()`)
    /// 
    /// Panics if `i == j`
    pub fn set(&mut self, i: usize, j: usize) {
        assert_ne!(i, j);
        assert!(i < self.slice.len() && j < self.slice.len());

        self.first = i;
        self.second = j;
    }
}

impl<T> crate::ResettableIterator for DoubleIterator<'_, T> {
    fn reset(&mut self) {
        self.first = 0;
        self.second = 1;
    }
}

impl<T> Iterator for DoubleIterator<'_, T> {
    type Item = (*mut T, *mut T);

    fn next(&mut self) -> Option<Self::Item> {
        if self.first == self.slice.len() {
            return None;
        }

        let returned = Some(unsafe { (self.nth_ptr(self.first), self.nth_ptr(self.second)) });
        std::mem::drop(self.increment()); // Dropping is a way to ignore the error which doesn't matter here

        returned
    }
}

/// A `DoubleIterator` iterating on one single "line" (see explanation below)
/// 
/// # Introduction
/// The iteration cycle of a `DoubleIterator` can be seen as a matrix with `i` as the value of the line and `j` as the value of the collumn. For example, in an array as `[0, 1, 2, 3, 4]`, a `DoubleIterator` will return the numbered cells and discard the blanks
/// ```text
/// +---+---+---+---+---+---+
/// |   |i=0|i=1|i=2|i=3|i=4|
/// +---+---+---+---+---+---+
/// |j=0|   | 1 | 2 | 3 | 4 |
/// +---+---+---+---+---+---+
/// |j=1| 5 |   | 6 | 7 | 8 |
/// +---+---+---+---+---+---+
/// |j=2| 9 |10 |   |11 |12 |
/// +---+---+---+---+---+---+
/// |j=3|13 |14 |15 |   |16 |
/// +---+---+---+---+---+---+
/// |j=4|17 |18 |19 |20 |   |
/// +---+---+---+---+---+---+
/// ```
/// 
/// In this example, the first iterator tuple returned (once the two members dereferenced) is `(0, 1)`, then `(0, 2)`, `(0, 3)`, `(0, 4)`, and at the end of line, `i` is reset and `j` is incrememented, returning `(1, 0)`, `(1, 2)` because there is a blank in the cell (`i=1`; `j=1`), `(1, 3)`...
/// 
/// The blanks are here because there can't be two mutable references on the same object.
/// 
/// But in some cases, you need to iterate only on one single line and not the whole grid, that's why `SingleLineIterator` exists.
/// 
/// # Hey, wait! Why using that iterator and not simply iterating manually?
/// Just like `DoubleIterator` does, this iterator returns two raw pointers to a member of the slice to iterate
/// 
/// Since version 0.3.3, the prefered way to do this is to use the `safe_for_each` method
pub struct SingleLineIterator<'a, T> {
    slice: &'a mut [T],
    index: usize,
    cur: usize,
}

impl<'a, T> SingleLineIterator<'a, T> {
    /// Returns a new `SingleLineIterator` which returns a tuple of a mutable reference to `slice[index]` and to another member of `slice` at each iteration
    /// 
    /// # Panics
    /// Panics if `index` is greater or equal to `slice.len()`
    pub fn new(slice: &'a mut [T], index: usize) -> Self {
        assert!(index < slice.len());

        Self {
            slice,
            index,
            cur: if index == 0 {
                1
            } else {
                0
            },
        }
    }

    /// Runs the given closure in a safe context
    /// 
    /// # Example
    /// ```
    /// use iterators_collection::share::SingleLineIterator;
    /// 
    /// let mut array = [1, 2, 3, 4, 5];
    /// let iter = SingleLineIterator::new(&mut array, 0);
    /// 
    /// iter.safe_for_each(|i, j| {
    ///     println!("Got i = {} and j = {}", i, j);
    ///     assert_ne!(i, j);
    /// });
    /// ```
    /// 
    /// # Notes
    /// Not like a legacy iteration using a `for` loop, i and j are references because it's safe to use in this context
    pub fn safe_for_each<F: Fn(&mut T, &mut T)>(self, callback: F) {
        for (i, j) in self {
            unsafe {
                callback(&mut *i, &mut *j);
            }
        }
    }
}

impl<T> crate::ResettableIterator for SingleLineIterator<'_, T> {
    fn reset(&mut self) {
        self.cur = 0;
    }
}

impl<'a, T> Iterator for SingleLineIterator<'a, T> {
    type Item = (*mut T, *mut T);

    fn next(&mut self) -> Option<Self::Item> {
        let returned = if self.cur >= self.slice.len() {
            None
        } else {
            unsafe {
                let ptr1 = self.slice.get_unchecked_mut(self.index) as *mut T;
                let ptr2 = self.slice.get_unchecked_mut(self.cur)   as *mut T;

                Some((ptr1, ptr2))
            }
        };

        self.cur += 1;
        if self.cur == self.index {
            self.cur += 1;
        }

        returned
    }
}

impl<'a, T> From<DoubleIterator<'a, T>> for SingleLineIterator<'a, T> {
    fn from(src: DoubleIterator<'a, T>) -> Self {
        Self {
            cur: src.second,
            index: src.first,
            slice: src.slice,
        }
    }
}


#[cfg(test)]
mod tests;