1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/*
 * Copyright 2021 Fluence Labs Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

use super::LiError;
use super::LiResult;
use crate::read_array_ty;
use crate::read_ty;
use crate::IValue;

use std::cell::Cell;

pub struct MemoryReader<'m> {
    pub(self) memory: &'m [Cell<u8>],
}

/// Reads values of basic types sequentially from the provided reader.
/// It doesn't check memory limits for the optimization purposes,
/// so it could be created only by the MemoryReader::sequential_reader method.
pub struct SequentialReader<'r, 'm> {
    reader: &'r MemoryReader<'m>,
    offset: Cell<usize>,
}

impl<'m> MemoryReader<'m> {
    pub fn new(memory: &'m [Cell<u8>]) -> Self {
        Self { memory }
    }

    /// Returns reader that allows read sequentially. It's important that memory limit is checked
    /// only inside this function. All others functions of the returned reader don't have any
    /// checks assuming that reader is well-formed.
    pub fn sequential_reader(
        &self,
        offset: usize,
        size: usize,
    ) -> LiResult<SequentialReader<'_, '_>> {
        self.check_access(offset, size)?;

        Ok(SequentialReader::new(&self, offset))
    }

    pub fn read_raw_u8_array(&self, offset: usize, elements_count: usize) -> LiResult<Vec<u8>> {
        let reader = self.sequential_reader(offset, elements_count)?;
        let mut result = Vec::with_capacity(elements_count);

        for _ in 0..elements_count {
            let value = reader.read_u8();
            result.push(value);
        }

        Ok(result)
    }

    pub fn read_bool_array(&self, offset: usize, elements_count: usize) -> LiResult<Vec<IValue>> {
        let reader = self.sequential_reader(offset, elements_count)?;
        let mut result = Vec::with_capacity(elements_count);

        for _ in 0..elements_count {
            let value = reader.read_u8();
            result.push(IValue::Boolean(value != 0));
        }

        Ok(result)
    }

    pub fn check_access(&self, offset: usize, size: usize) -> LiResult<()> {
        let right = offset + size;

        // the first condition is a check for overflow
        if right < offset || right >= self.memory.len() {
            return Err(LiError::InvalidAccess {
                offset,
                size,
                memory_size: self.memory.len(),
            });
        }

        Ok(())
    }

    read_array_ty!(read_u8_array, u8, U8);
    read_array_ty!(read_s8_array, i8, S8);
    read_array_ty!(read_u16_array, u16, U16);
    read_array_ty!(read_s16_array, i16, S16);
    read_array_ty!(read_u32_array, u32, U32);
    read_array_ty!(read_s32_array, i32, S32);
    read_array_ty!(read_i32_array, i32, I32);
    read_array_ty!(read_f32_array, f32, F32);
    read_array_ty!(read_u64_array, u64, U64);
    read_array_ty!(read_s64_array, i64, S64);
    read_array_ty!(read_i64_array, i64, I64);
    read_array_ty!(read_f64_array, f64, F64);
}

impl<'r, 'm> SequentialReader<'r, 'm> {
    pub(self) fn new(reader: &'r MemoryReader<'m>, offset: usize) -> Self {
        let offset = Cell::new(offset);
        Self { reader, offset }
    }

    pub fn read_bool(&self) -> bool {
        let offset = self.offset.get();
        let result = self.reader.memory[offset].get() != 0;

        self.offset.set(offset + 1);
        result
    }

    read_ty!(read_u8, u8, 1);
    read_ty!(read_i8, i8, 1);
    read_ty!(read_u16, u16, 2);
    read_ty!(read_i16, i16, 2);
    read_ty!(read_u32, u32, 4);
    read_ty!(read_i32, i32, 4);
    read_ty!(read_f32, f32, 4);
    read_ty!(read_u64, u64, 8);
    read_ty!(read_i64, i64, 8);
    read_ty!(read_f64, f64, 8);
}