1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// Issue states
//
// Copyright (c) 2018 Julian Ganz
//
// MIT License
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//

//! State resolution facilities
//!
//! This module provides the `Resolvable` trait for resolution of a given
//! issue's state as well as types implementing it for issue state containers.
//!

use std::collections;
use std::slice;
use std::sync::Arc;

use condition::Condition;
use error::*;
use iter::LeftJoinable;
use state;




/// Map for tracking enabled and disabled states
///
type EnabledMap<C> = collections::BTreeMap<Arc<state::IssueState<C>>, bool>;


/// Check whether the dependencies for an issue's state allow it to be enabled
///
/// For example, an issue state may only be enabled if all the states it extends
/// are enabled. The computation is done purely based on a given `EnabledMap`,
/// e.g. this function does not recurse into extended states.
///
/// This function may be used for implementing efficient computation of an
/// issue's state.
///
fn deps_enabled<C>(state: &state::IssueState<C>, map: &EnabledMap<C>) -> Result<bool>
    where C: Condition
{
    state
        .relations
        .iter()
        .join_left(map.iter())
        .filter_map(|item| match item.0 {
            state::StateRelation::Extends   => Some(item.1),
            state::StateRelation::Overrides => None,
        })
        .fold(Some(true), |state, val| if let (Some(s), Some(v)) = (state, val) {
            Some(s && *v)
        } else {
            None
        })
        .ok_or_else(|| Error::from(ErrorKind::DependencyError))
        // TODO: replace with try_fold()
}


/// Trait providing operation for resolving issues' states
///
/// Implementations of trait provide the reesolution of an issue's state. It is
/// generally assumed that the implementation encapsulates the states considered
/// for the resolution. For example, this may be implemented for containers of
/// issue states.
///
pub trait Resolvable<C>
    where C: Condition
{
    /// Resolve the state for a given issue
    ///
    /// Given an issue, this function will yield the state selected for it out
    /// of the issue states encapsulated in `self` --if any of the states is
    /// enabled for the issue.
    ///
    /// If no state is enabled for the given issue, this function will yield
    /// `None`.
    ///
    fn issue_state(&self, issue: &C::Issue) -> Result<Option<Arc<state::IssueState<C>>>>;
}




/// Set of issue states
///
/// This set of issue states is intended for the efficient computation of an
/// issue's state.
///
pub struct IssueStateSet<C>
    where C: Condition
{
    /// Container of states
    ///
    /// The states are kept in a linear sequence, ordered by dependency:
    /// an iterator over the slice will yield a state only after all its
    /// dependencies are yielded. Dependencies in this context are states
    /// which are extended or overridden by the yielded state.
    ///
    data: Box<[Arc<state::IssueState<C>>]>,
}


impl<C> IssueStateSet<C>
    where C: Condition
{
    /// Create an issue state set from a orderd set of issue states
    ///
    /// # Note:
    ///
    /// The set provided must be the (transitive) closure of all its elements
    /// regarding its relations to other sets: if a state is in the set, all
    /// states related to it must also be in the set. No explicit checking is
    /// performed to assert this property.
    ///
    pub fn from_set(mut states: collections::BTreeSet<Arc<state::IssueState<C>>>) -> Result<Self> {
        // We generate the state set by transferring states from the origin set
        // (`states`) to the result sequence (`data`) dependencies first.
        let mut data = Vec::default();
        while !states.is_empty() {
            let old_len = data.len();

            // We add all states for which no dependencies are left in the
            // origin set
            data.extend(states
                .iter()
                .filter(|state| !state
                    .relations
                    .iter()
                    .join_left(states.iter().map(|item| (item, ())))
                    .any(|item| item.1.is_some())
                )
                .map(Clone::clone));

            // Remove the states which are new in the target
            for state in data.split_at(old_len).1 {
                states.remove(state);
            }

            // If we did not find any state with no dependencies, there must be
            // a dependency cycle in the remaining origin set. We do this after
            // the removal for better reporting... eventually.
            if data.len() == old_len {
                return Err(Error::from(ErrorKind::CyclicDependency));
            }
        }

        Ok(Self {data: data.into_boxed_slice()})
    }

    /// Get an iterator for iterating over the issue states within the set
    ///
    /// This iterator will yield an issue state only after all its dependencies.
    ///
    pub fn iter(&self) -> slice::Iter<Arc<state::IssueState<C>>> {
        self.data.iter()
    }
}


impl<C> Resolvable<C> for IssueStateSet<C>
    where C: Condition
{
    fn issue_state(&self, issue: &C::Issue) -> Result<Option<Arc<state::IssueState<C>>>> {
        let mut retval = None;
        let mut enabled_map = EnabledMap::default();

        // Since the data is nicely ordered in `data`, one liear pass over the
        // states is sufficient for selecting one for any given issue. We simply
        // determine the state foe each one as we go and keep the last of the
        // enabled states.
        for state in self.data.iter() {
            let enabled = state.conditions_satisfied(issue)
                && deps_enabled(&state, &enabled_map)?;
            enabled_map.insert(state.clone(), enabled);
            if enabled {
                retval = Some(state);
            }
        }

        Ok(retval.map(Clone::clone))
    }
}


/// Create an issue state set directly from a vector
///
/// # Warning
///
/// Within the vector, the states must appear ordered by dependency: all
/// dependencies of a state must appear before the state itself!
///
impl<C> From<state::IssueStateVec<C>> for IssueStateSet<C>
    where C: Condition
{
    fn from(states: Vec<Arc<state::IssueState<C>>>) -> Self {
        Self {data: states.into_boxed_slice()}
    }
}


// Because #[derive(Default)] doesn't work for some reason
impl<C> Default for IssueStateSet<C>
    where C: Condition
{
    fn default() -> Self {
        Self {data: Default::default()}
    }
}




#[cfg(test)]
mod tests {
    use super::*;
    use test::TestState;

    #[test]
    fn smoke() {
        let state1 : Arc<TestState> = state::IssueState::new("new".to_string()).into();

        let state2 : Arc<TestState> = {
            let mut tmp = state::IssueState::new("acknowledged".to_string());
            tmp.conditions = vec!["acked".into()];
            tmp.add_overridden([state1.clone()].into_iter().map(Clone::clone));
            tmp
        }.into();

        let state3 : Arc<TestState> = {
            let mut tmp = state::IssueState::new("assigned".to_string());
            tmp.conditions = vec!["assigned".into()];
            tmp.add_extended([state2.clone()].into_iter().map(Clone::clone));
            tmp
        }.into();

        let state4 : Arc<TestState> = {
            let mut tmp = state::IssueState::new("closed".to_string());
            tmp.conditions = vec!["closed".into()];
            tmp.add_overridden([state3.clone()].into_iter().map(Clone::clone));
            tmp
        }.into();

        let states = IssueStateSet::from_set({
            let mut set = collections::BTreeSet::new();
            set.insert(state1);
            set.insert(state2);
            set.insert(state3);
            set.insert(state4);
            set
        }).expect("Failed to create issue state set.");

        {
            let state = states
                .issue_state(&collections::BTreeMap::new())
                .expect("Failed to determine state.")
                .expect("Wrongly determined no state.");
            assert_eq!(state.name(), "new");
        }

        {
            let mut issue = collections::BTreeMap::new();
            issue.insert("acked", true);
            let state = states
                .issue_state(&issue)
                .expect("Failed to determine state.")
                .expect("Wrongly determined no state.");
            assert_eq!(state.name(), "acknowledged");
        }

        {
            let mut issue = collections::BTreeMap::new();
            issue.insert("assigned", true);
            let state = states
                .issue_state(&issue)
                .expect("Failed to determine state.")
                .expect("Wrongly determined no state.");
            assert_eq!(state.name(), "new");
        }

        {
            let mut issue = collections::BTreeMap::new();
            issue.insert("acked", true);
            issue.insert("assigned", true);
            let state = states
                .issue_state(&issue)
                .expect("Failed to determine state.")
                .expect("Wrongly determined no state.");
            assert_eq!(state.name(), "assigned");
        }

        {
            let mut issue = collections::BTreeMap::new();
            issue.insert("acked", true);
            issue.insert("closed", true);
            let state = states
                .issue_state(&issue)
                .expect("Failed to determine state.")
                .expect("Wrongly determined no state.");
            assert_eq!(state.name(), "closed");
        }
    }
}