1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Copyright (c) 2018-2020 Thomas Kramer.
// SPDX-FileCopyrightText: 2018-2022 Thomas Kramer
//
// SPDX-License-Identifier: AGPL-3.0-or-later

//! Data structures and functions for 3x3 matrices.

use crate::CoordinateType;

/// 3x3 matrix of the form.
/// ```txt
/// [[ m11, m12, m13 ],
///  [ m21, m22, m23 ],
///  [ m31, m32, m33 ]]
/// ```
#[derive(Clone, Hash, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Matrix3d<T: CoordinateType> {
    /// m11
    pub m11: T,
    /// m12
    pub m12: T,
    /// m13
    pub m13: T,
    /// m21
    pub m21: T,
    /// m22
    pub m22: T,
    /// m23
    pub m23: T,
    /// m31
    pub m31: T,
    /// m32
    pub m32: T,
    /// m33
    pub m33: T,
}

impl<T> Matrix3d<T>
    where T: CoordinateType
{
    /// Create a new 3x3 matrix with entries of the form:
    /// ```txt
    /// [[ m11, m12, m13 ],
    ///  [ m21, m22, m23 ],
    ///  [ m31, m32, m33 ]]
    /// ```
    pub fn new(m11: T, m12: T, m13: T, m21: T, m22: T, m23: T, m31: T, m32: T, m33: T) -> Self {
        Matrix3d {
            m11,
            m12,
            m13,
            m21,
            m22,
            m23,
            m31,
            m32,
            m33,
        }
    }

    /// Return the identity matrix.
    pub fn identity() -> Self {
        let _0 = T::zero();
        let _1 = T::one();
        Self::new(_1, _0, _0,
                  _0, _1, _0,
                  _0, _0, _1)
    }

    /// Compute product of the matrix with a scalar.
    pub fn mul_scalar(&self, rhs: T) -> Self {
        Matrix3d::new(
            self.m11 * rhs, self.m12 * rhs, self.m13 * rhs,
            self.m21 * rhs, self.m22 * rhs, self.m23 * rhs,
            self.m31 * rhs, self.m32 * rhs, self.m33 * rhs,
        )
    }

    /// Element-wise addition of two matrices.
    pub fn add(&self, rhs: &Self) -> Self {
        Matrix3d::new(
            self.m11 + rhs.m11, self.m12 + rhs.m12, self.m13 + rhs.m13,
            self.m21 + rhs.m21, self.m22 + rhs.m22, self.m23 + rhs.m23,
            self.m31 + rhs.m31, self.m32 + rhs.m32, self.m33 + rhs.m33,
        )
    }

    /// Compute multiplication with a column vector `A*rhs`.
    pub fn mul_column_vector(&self, rhs: &(T, T, T)) -> (T, T, T) {
        (
            self.m11 * rhs.0 + self.m12 * rhs.1 + self.m13 * rhs.2,
            self.m21 * rhs.0 + self.m22 * rhs.1 + self.m23 * rhs.2,
            self.m31 * rhs.0 + self.m32 * rhs.1 + self.m33 * rhs.2,
        )
    }

    /// Matrix-matrix multiplication.
    pub fn mul_matrix(&self, rhs: &Self) -> Self {
        let a = self;
        let b = rhs;
        let c11 = a.m11 * b.m11 + a.m12 * b.m21 + a.m13 * b.m31;
        let c12 = a.m11 * b.m12 + a.m12 * b.m22 + a.m13 * b.m32;
        let c13 = a.m11 * b.m13 + a.m12 * b.m23 + a.m13 * b.m33;
        let c21 = a.m21 * b.m11 + a.m22 * b.m21 + a.m23 * b.m31;
        let c22 = a.m21 * b.m12 + a.m22 * b.m22 + a.m23 * b.m32;
        let c23 = a.m21 * b.m13 + a.m22 * b.m23 + a.m23 * b.m33;
        let c31 = a.m31 * b.m11 + a.m32 * b.m21 + a.m33 * b.m31;
        let c32 = a.m31 * b.m12 + a.m32 * b.m22 + a.m33 * b.m32;
        let c33 = a.m31 * b.m13 + a.m32 * b.m23 + a.m33 * b.m33;
        Self::new(
            c11, c12, c13,
            c21, c22, c23,
            c31, c32, c33,
        )
    }

    /// Compute the transpose of the matrix.
    pub fn transpose(&self) -> Self {
        Self::new(
            self.m11, self.m21, self.m31,
            self.m12, self.m22, self.m32,
            self.m13, self.m23, self.m33,
        )
    }

    /// Test if this matrix is the identity matrix.
    pub fn is_identity(&self) -> bool {
        self == &Self::identity()
    }

    /// Test if this matrix is unitary.
    pub fn is_unitary(&self) -> bool {
        self.mul_matrix(&self.transpose()).is_identity()
    }

    /// Compute the determinant of this matrix.
    pub fn determinant(&self) -> T {
        /*
        ```python
        import sympy as sp
        m = sp.Matrix([[sp.Symbol(f"a.m{i}{j}") for j in range(1,4)] for i in range(1,4)])
        m.det()
        ```
         */
        let a = self;
        a.m11 * a.m22 * a.m33 - a.m11 * a.m23 * a.m32 - a.m12 * a.m21 * a.m33
            + a.m12 * a.m23 * a.m31 + a.m13 * a.m21 * a.m32 - a.m13 * a.m22 * a.m31
    }

    /// Compute the inverse matrix.
    /// `None` will be returned if the determinant is zero and the matrix
    /// is not invertible.
    pub fn try_inverse(&self) -> Option<Self> {
        /*
        ```python
        import sympy as sp
        m = sp.Matrix([[sp.Symbol(f"a.m{i}{j}") for j in range(1,4)] for i in range(1,4)])
        det = sp.Symbol('det')

        # Compute inverse multiplied with determinant.
        inv_det = m.inv() * m.det()
        inv = inv_det / det
        # Print inverse with factored-out determinant.
        print(repr(inv).replace('[', '').replace(']', ''))
        ```
         */
        let a = self;

        // Compute determinant.
        let det = a.determinant();
        if !det.is_zero() {
            Some(Self::new(
                (a.m22 * a.m33 - a.m23 * a.m32) / det, (a.m13 * a.m32 - a.m12 * a.m33) / det, (a.m12 * a.m23 - a.m13 * a.m22) / det,
                (a.m23 * a.m31 - a.m21 * a.m33) / det, (a.m11 * a.m33 - a.m13 * a.m31) / det, (a.m13 * a.m21 - a.m11 * a.m23) / det,
                (a.m21 * a.m32 - a.m22 * a.m31) / det, (a.m12 * a.m31 - a.m11 * a.m32) / det, (a.m11 * a.m22 - a.m12 * a.m21) / det,
            ))
        } else {
            None
        }
    }
}

impl<T: CoordinateType> Default for Matrix3d<T> {
    fn default() -> Self {
        Self::identity()
    }
}

#[test]
fn test_matrix_multiplication() {
    let id: Matrix3d<i32> = Matrix3d::identity();
    assert_eq!(id.mul_matrix(&id), id);
}

#[test]
fn test_mul_column_vector() {
    let id: Matrix3d<i32> = Matrix3d::identity();
    let v = (1, 2, 3);
    assert_eq!(id.mul_column_vector(&v), v);
}

#[test]
fn test_inverse() {
    let m = Matrix3d::new(1.0, 4.0, 2.0,
                          1.0, 2.0, 4.0,
                          2.0, 0.0, 4.0);
    let i = m.try_inverse().unwrap();
    assert_eq!(m.mul_matrix(&i), Matrix3d::identity());
    assert_eq!(i.mul_matrix(&m), Matrix3d::identity());
}