# [−][src]Struct irmaseal_curve::Scalar

pub struct Scalar(_);

Represents an element of the scalar field $\mathbb{F}_q$ of the BLS12-381 elliptic curve construction.

## Methods

### impl Scalar[src]

#### pub const fn one() -> Scalar[src]

Returns one, the multiplicative identity.

#### pub const fn double(&self) -> Scalar[src]

Doubles this field element.

#### pub fn from_bytes(bytes: &[u8; 32]) -> CtOption<Scalar>[src]

Attempts to convert a little-endian byte representation of a scalar into a Scalar, failing if the input is not canonical.

#### pub fn to_bytes(&self) -> [u8; 32][src]

Converts an element of Scalar into a byte representation in little-endian byte order.

#### pub fn from_bytes_wide(bytes: &[u8; 64]) -> Scalar[src]

Converts a 512-bit little endian integer into a Scalar by reducing by the modulus.

#### pub const fn from_raw(val: [u64; 4]) -> Self[src]

Converts from an integer represented in little endian into its (congruent) Scalar representation.

#### pub const fn square(&self) -> Scalar[src]

Squares this element.

#### pub fn sqrt(&self) -> CtOption<Self>[src]

Computes the square root of this element, if it exists.

#### pub fn pow(&self, by: &[u64; 4]) -> Self[src]

Exponentiates self by by, where by is a little-endian order integer exponent.

#### pub fn pow_vartime(&self, by: &[u64; 4]) -> Self[src]

Exponentiates self by by, where by is a little-endian order integer exponent.

This operation is variable time with respect to the exponent. If the exponent is fixed, this operation is effectively constant time.

#### pub fn invert(&self) -> CtOption<Self>[src]

Computes the multiplicative inverse of this element, failing if the element is zero.

#### pub const fn mul(&self, rhs: &Self) -> Self[src]

Multiplies rhs by self, returning the result.

#### pub const fn sub(&self, rhs: &Self) -> Self[src]

Subtracts rhs from self, returning the result.

#### pub const fn add(&self, rhs: &Self) -> Self[src]

Adds rhs to self, returning the result.

#### pub const fn neg(&self) -> Self[src]

Negates self.

## Trait Implementations

### impl<'a, 'b> Add<&'b Scalar> for &'a Scalar[src]

#### type Output = Scalar

The resulting type after applying the + operator.

### impl<'b> Add<&'b Scalar> for Scalar[src]

#### type Output = Scalar

The resulting type after applying the + operator.

### impl<'a> Add<Scalar> for &'a Scalar[src]

#### type Output = Scalar

The resulting type after applying the + operator.

### impl Add<Scalar> for Scalar[src]

#### type Output = Scalar

The resulting type after applying the + operator.

### impl<'a, 'b> Mul<&'b Scalar> for &'a Scalar[src]

#### type Output = Scalar

The resulting type after applying the * operator.

### impl<'b> Mul<&'b Scalar> for Scalar[src]

#### type Output = Scalar

The resulting type after applying the * operator.

### impl<'a, 'b> Mul<&'b Scalar> for &'a Gt[src]

#### type Output = Gt

The resulting type after applying the * operator.

### impl<'b> Mul<&'b Scalar> for Gt[src]

#### type Output = Gt

The resulting type after applying the * operator.

### impl<'a, 'b> Mul<&'b Scalar> for &'a G1Projective[src]

#### type Output = G1Projective

The resulting type after applying the * operator.

### impl<'a, 'b> Mul<&'b Scalar> for &'a G1Affine[src]

#### type Output = G1Projective

The resulting type after applying the * operator.

### impl<'b> Mul<&'b Scalar> for G1Projective[src]

#### type Output = G1Projective

The resulting type after applying the * operator.

### impl<'b> Mul<&'b Scalar> for G1Affine[src]

#### type Output = G1Projective

The resulting type after applying the * operator.

### impl<'a, 'b> Mul<&'b Scalar> for &'a G2Projective[src]

#### type Output = G2Projective

The resulting type after applying the * operator.

### impl<'a, 'b> Mul<&'b Scalar> for &'a G2Affine[src]

#### type Output = G2Projective

The resulting type after applying the * operator.

### impl<'b> Mul<&'b Scalar> for G2Projective[src]

#### type Output = G2Projective

The resulting type after applying the * operator.

### impl<'b> Mul<&'b Scalar> for G2Affine[src]

#### type Output = G2Projective

The resulting type after applying the * operator.

### impl<'a> Mul<Scalar> for &'a Scalar[src]

#### type Output = Scalar

The resulting type after applying the * operator.

### impl Mul<Scalar> for Scalar[src]

#### type Output = Scalar

The resulting type after applying the * operator.

### impl<'a> Mul<Scalar> for &'a Gt[src]

#### type Output = Gt

The resulting type after applying the * operator.

### impl Mul<Scalar> for Gt[src]

#### type Output = Gt

The resulting type after applying the * operator.

### impl<'a> Mul<Scalar> for &'a G1Projective[src]

#### type Output = G1Projective

The resulting type after applying the * operator.

### impl Mul<Scalar> for G1Projective[src]

#### type Output = G1Projective

The resulting type after applying the * operator.

### impl<'a> Mul<Scalar> for &'a G1Affine[src]

#### type Output = G1Projective

The resulting type after applying the * operator.

### impl Mul<Scalar> for G1Affine[src]

#### type Output = G1Projective

The resulting type after applying the * operator.

### impl<'a> Mul<Scalar> for &'a G2Projective[src]

#### type Output = G2Projective

The resulting type after applying the * operator.

### impl Mul<Scalar> for G2Projective[src]

#### type Output = G2Projective

The resulting type after applying the * operator.

### impl<'a> Mul<Scalar> for &'a G2Affine[src]

#### type Output = G2Projective

The resulting type after applying the * operator.

### impl Mul<Scalar> for G2Affine[src]

#### type Output = G2Projective

The resulting type after applying the * operator.

### impl<'a> Neg for &'a Scalar[src]

#### type Output = Scalar

The resulting type after applying the - operator.

### impl Neg for Scalar[src]

#### type Output = Scalar

The resulting type after applying the - operator.

### impl<'a, 'b> Sub<&'b Scalar> for &'a Scalar[src]

#### type Output = Scalar

The resulting type after applying the - operator.

### impl<'b> Sub<&'b Scalar> for Scalar[src]

#### type Output = Scalar

The resulting type after applying the - operator.

### impl<'a> Sub<Scalar> for &'a Scalar[src]

#### type Output = Scalar

The resulting type after applying the - operator.

### impl Sub<Scalar> for Scalar[src]

#### type Output = Scalar

The resulting type after applying the - operator.

## Blanket Implementations

### impl<T> ToOwned for T where    T: Clone, [src]

#### type Owned = T

The resulting type after obtaining ownership.

### impl<T, U> TryFrom<U> for T where    U: Into<T>, [src]

#### type Error = Infallible

The type returned in the event of a conversion error.

### impl<T, U> TryInto<U> for T where    U: TryFrom<T>, [src]

#### type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.