1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
use std::cmp;
use std::fmt;
use std::net::Ipv6Addr;
use std::str::FromStr;

use common::{IpNetworkError, cidr_parts, parse_prefix};

const IPV6_BITS: u8 = 128;
const IPV6_SEGMENT_BITS: u8 = 16;

/// Represents a network range where the IP addresses are of v6
#[derive(Debug,Clone,Copy,Hash,PartialEq,Eq,PartialOrd,Ord)]
pub struct Ipv6Network {
    addr: Ipv6Addr,
    prefix: u8,
}

impl Ipv6Network {
    /// Constructs a new `Ipv6Network` from any `Ipv6Addr` and a prefix denoting the network size.
    /// If the prefix is larger than 128 this will return an `IpNetworkError::InvalidPrefix`.
    pub fn new(addr: Ipv6Addr, prefix: u8) -> Result<Ipv6Network, IpNetworkError> {
        if prefix > IPV6_BITS {
            Err(IpNetworkError::InvalidPrefix)
        } else {
            Ok(Ipv6Network {
                addr: addr,
                prefix: prefix,
            })
        }
    }

    pub fn ip(&self) -> Ipv6Addr {
        self.addr
    }

    pub fn prefix(&self) -> u8 {
        self.prefix
    }

    /// Returns the mask for this `Ipv6Network`.
    /// That means the `prefix` most significant bits will be 1 and the rest 0
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv6Addr;
    /// use ipnetwork::Ipv6Network;
    ///
    /// let net: Ipv6Network = "ff01::0/32".parse().unwrap();
    /// assert_eq!(net.mask(), Ipv6Addr::new(0xffff, 0xffff, 0, 0, 0, 0, 0, 0));
    /// ```
    pub fn mask(&self) -> Ipv6Addr {
        // Ipv6Addr::from is only implemented for [u8; 16]
        let mut segments = [0; 16];
        for (i, segment) in segments.iter_mut().enumerate() {
            let bits_remaining = self.prefix.saturating_sub(i as u8 * 8);
            let set_bits = cmp::min(bits_remaining, 8);
            *segment = !(0xff as u16 >> set_bits) as u8;
        }
        Ipv6Addr::from(segments)
    }

    /// Checks if a given `Ipv6Addr` is in this `Ipv6Network`
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv6Addr;
    /// use ipnetwork::Ipv6Network;
    ///
    /// let net: Ipv6Network = "ff01::0/32".parse().unwrap();
    /// assert!(net.contains(Ipv6Addr::new(0xff01, 0, 0, 0, 0, 0, 0, 0x1)));
    /// assert!(!net.contains(Ipv6Addr::new(0xffff, 0, 0, 0, 0, 0, 0, 0x1)));
    /// ```
    pub fn contains(&self, ip: Ipv6Addr) -> bool {
        let a = self.addr.segments();
        let b = ip.segments();
        let addrs = Iterator::zip(a.iter(), b.iter());
        self.mask().segments().iter().zip(addrs).all(|(mask, (a, b))| a & mask == b & mask)
    }
}

impl FromStr for Ipv6Network {
    type Err = IpNetworkError;
    fn from_str(s: &str) -> Result<Ipv6Network, IpNetworkError> {
        let (addr_str, prefix_str) = cidr_parts(s)?;
        let addr = Ipv6Addr::from_str(addr_str).map_err(|_| IpNetworkError::InvalidAddr(addr_str.to_string()))?;
        let prefix = parse_prefix(prefix_str, IPV6_BITS)?;
        Ipv6Network::new(addr, prefix)
    }
}

impl fmt::Display for Ipv6Network {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{}/{}", self.ip(), self.prefix())
    }
}

/// Converts a `Ipv6Addr` network mask into a prefix.
/// If the mask is invalid this will return an `IpNetworkError::InvalidPrefix`.
pub fn ipv6_mask_to_prefix(mask: Ipv6Addr) -> Result<u8, IpNetworkError> {
    let mask = mask.segments();
    let mut mask_iter = mask.into_iter();

    // Count the number of set bits from the start of the address
    let mut prefix = 0;
    for &segment in &mut mask_iter {
        if segment == 0xffff {
            prefix += IPV6_SEGMENT_BITS;
        } else if segment == 0 {
            // Prefix finishes on a segment boundary
            break;
        } else {
            let prefix_bits = (!segment).leading_zeros() as u8;
            // Check that the remainder of the bits are all unset
            if segment << prefix_bits != 0 {
                return Err(IpNetworkError::InvalidPrefix);
            }
            prefix += prefix_bits;
            break;
        }
    }

    // Now check all the remaining bits are unset
    for &segment in mask_iter {
        if segment != 0 {
            return Err(IpNetworkError::InvalidPrefix);
        }
    }

    Ok(prefix)
}

#[cfg(test)]
mod test {
    use std::net::Ipv6Addr;
    use super::*;

    #[test]
    fn create_v6() {
        let cidr = Ipv6Network::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1), 24).unwrap();
        assert_eq!(cidr.prefix(), 24);
    }

    #[test]
    fn create_v6_invalid_prefix() {
        let cidr = Ipv6Network::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1), 129);
        assert!(cidr.is_err());
    }

    #[test]
    fn parse_v6() {
        let cidr: Ipv6Network = "::1/0".parse().unwrap();
        assert_eq!(cidr.ip(), Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
        assert_eq!(cidr.prefix(), 0);
    }

    #[test]
    fn parse_v6_2() {
        let cidr: Ipv6Network = "FF01:0:0:17:0:0:0:2/64".parse().unwrap();
        assert_eq!(cidr.ip(), Ipv6Addr::new(0xff01, 0, 0, 0x17, 0, 0, 0, 0x2));
        assert_eq!(cidr.prefix(), 64);
    }

    #[test]
    fn parse_v6_fail_addr() {
        let cidr: Option<Ipv6Network> = "2001::1::/8".parse().ok();
        assert_eq!(None, cidr);
    }

    #[test]
    fn parse_v6_fail_prefix() {
        let cidr: Option<Ipv6Network> = "::1/129".parse().ok();
        assert_eq!(None, cidr);
    }

    #[test]
    fn mask_v6() {
        let cidr = Ipv6Network::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), 40).unwrap();
        let mask = cidr.mask();
        assert_eq!(mask, Ipv6Addr::new(0xffff, 0xffff, 0xff00, 0, 0, 0, 0, 0));
    }

    #[test]
    fn contains_v6() {
        let cidr = Ipv6Network::new(Ipv6Addr::new(0xff01, 0, 0, 0x17, 0, 0, 0, 0x2), 65).unwrap();
        let ip = Ipv6Addr::new(0xff01, 0, 0, 0x17, 0x7fff, 0, 0, 0x2);
        assert!(cidr.contains(ip));
    }

    #[test]
    fn not_contains_v6() {
        let cidr = Ipv6Network::new(Ipv6Addr::new(0xff01, 0, 0, 0x17, 0, 0, 0, 0x2), 65).unwrap();
        let ip = Ipv6Addr::new(0xff01, 0, 0, 0x17, 0xffff, 0, 0, 0x2);
        assert!(!cidr.contains(ip));
    }

    #[test]
    fn v6_mask_to_prefix() {
        let mask = Ipv6Addr::new(0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0);
        let prefix = ipv6_mask_to_prefix(mask).unwrap();
        assert_eq!(prefix, 48);
    }

    #[test]
    fn invalid_v6_mask_to_prefix() {
        let mask = Ipv6Addr::new(0, 0, 0xffff, 0xffff, 0, 0, 0, 0);
        let prefix = ipv6_mask_to_prefix(mask);
        assert!(prefix.is_err());
    }
}