1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//! The `io_uring` library for Rust.
//!
//! The crate only provides a summary of the parameters.
//! For more detailed documentation, see manpage.

#[macro_use]
mod util;
mod sys;
mod register;
mod submit;
pub mod squeue;
pub mod cqueue;
pub mod opcode;

#[cfg(feature = "concurrent")]
pub mod concurrent;

use std::{ io, cmp, mem };
use std::convert::TryInto;
use std::os::unix::io::{ AsRawFd, RawFd };
use std::mem::ManuallyDrop;
use util::{ Fd, Mmap };
pub use submit::Submitter;
pub use squeue::SubmissionQueue;
pub use cqueue::CompletionQueue;
pub use register::Probe;

/// IoUring instance
pub struct IoUring {
    fd: Fd,
    params: Parameters,
    memory: ManuallyDrop<MemoryMap>,
    sq: SubmissionQueue,
    cq: CompletionQueue
}

#[allow(dead_code)]
struct MemoryMap {
    sq_mmap: Mmap,
    sqe_mmap: Mmap,
    cq_mmap: Option<Mmap>
}

/// IoUring build params
#[derive(Clone, Default)]
pub struct Builder {
    dontfork: bool,
    params: sys::io_uring_params
}

#[derive(Clone)]
pub struct Parameters(sys::io_uring_params);

unsafe impl Send for IoUring {}
unsafe impl Sync for IoUring {}

impl IoUring {
    /// Create a IoUring instance
    ///
    /// The `entries` sets the size of queue,
    /// and it value should be the power of two.
    #[inline]
    pub fn new(entries: u32) -> io::Result<IoUring> {
        IoUring::with_params(entries, Default::default())
    }

    fn with_params(entries: u32, mut p: sys::io_uring_params) -> io::Result<IoUring> {
        // NOTE: The `SubmissionQueue` and `CompletionQueue` are references,
        // and their lifetime can never exceed `MemoryMap`.
        //
        // I really hope that Rust can safely use self-reference types.
        #[inline]
        unsafe fn setup_queue(fd: &Fd, p: &sys::io_uring_params)
            -> io::Result<(MemoryMap, SubmissionQueue, CompletionQueue)>
        {
            let sq_len = p.sq_off.array as usize
                + p.sq_entries as usize * mem::size_of::<u32>();
            let cq_len = p.cq_off.cqes as usize
                + p.cq_entries as usize * mem::size_of::<sys::io_uring_cqe>();
            let sqe_len = p.sq_entries as usize * mem::size_of::<sys::io_uring_sqe>();
            let sqe_mmap = Mmap::new(fd, sys::IORING_OFF_SQES as _, sqe_len)?;

            if p.features & sys::IORING_FEAT_SINGLE_MMAP != 0 {
                let scq_mmap = Mmap::new(fd, sys::IORING_OFF_SQ_RING as _, cmp::max(sq_len, cq_len))?;

                let sq = SubmissionQueue::new(&scq_mmap, &sqe_mmap, p);
                let cq = CompletionQueue::new(&scq_mmap, p);
                let mm = MemoryMap {
                    sq_mmap: scq_mmap,
                    cq_mmap: None,
                    sqe_mmap
                };

                Ok((mm, sq, cq))
            } else {
                let sq_mmap = Mmap::new(fd, sys::IORING_OFF_SQ_RING as _, sq_len)?;
                let cq_mmap = Mmap::new(fd, sys::IORING_OFF_CQ_RING as _, cq_len)?;

                let sq = SubmissionQueue::new(&sq_mmap, &sqe_mmap, p);
                let cq = CompletionQueue::new(&cq_mmap, p);
                let mm = MemoryMap {
                    cq_mmap: Some(cq_mmap),
                    sq_mmap, sqe_mmap
                };

                Ok((mm, sq, cq))
            }
        }

        let fd: Fd = unsafe {
            sys::io_uring_setup(entries, &mut p)
                .try_into()
                .map_err(|_| io::Error::last_os_error())?
        };

        let (mm, sq, cq) = unsafe { setup_queue(&fd, &p)? };

        Ok(IoUring {
            fd, sq, cq,
            params: Parameters(p),
            memory: ManuallyDrop::new(mm)
        })
    }

    #[inline]
    pub fn submitter(&self) -> Submitter<'_> {
        Submitter::new(&self.fd, self.params.0.flags, &self.sq)
    }

    #[inline]
    pub fn params(&self) -> &Parameters {
        &self.params
    }

    /// Initiate and/or complete asynchronous I/O
    ///
    /// # Safety
    ///
    /// This provides a raw interface so developer must ensure that parameters are correct.
    #[inline]
    pub unsafe fn enter(&self, to_submit: u32, min_complete: u32, flag: u32, sig: Option<&libc::sigset_t>)
        -> io::Result<usize>
    {
        self.submitter().enter(to_submit, min_complete, flag, sig)
    }

    /// Initiate asynchronous I/O.
    #[inline]
    pub fn submit(&self) -> io::Result<usize> {
        self.submitter().submit()
    }

    /// Initiate and/or complete asynchronous I/O
    #[inline]
    pub fn submit_and_wait(&self, want: usize) -> io::Result<usize> {
        self.submitter().submit_and_wait(want)
    }

    /// Get submitter and submission queue and completion queue
    pub fn split(&mut self)
        -> (Submitter<'_>, &mut SubmissionQueue, &mut CompletionQueue)
    {
        let submit = Submitter::new(&self.fd, self.params.0.flags, &self.sq);
        (submit, &mut self.sq, &mut self.cq)
    }

    /// Get submission queue
    pub fn submission(&mut self) -> &mut SubmissionQueue {
        &mut self.sq
    }

    /// Get completion queue
    pub fn completion(&mut self) -> &mut CompletionQueue {
        &mut self.cq
    }

    /// Make a concurrent IoUring.
    #[cfg(feature = "concurrent")]
    pub fn concurrent(self) -> concurrent::IoUring {
        concurrent::IoUring::new(self)
    }
}

impl Drop for IoUring {
    fn drop(&mut self) {
        unsafe {
            ManuallyDrop::drop(&mut self.memory);
        }
    }
}

impl Builder {
    pub fn dontfork(&mut self) -> &mut Self {
        self.dontfork = true;
        self
    }

    /// Perform busy-waiting for an I/O completion,
    /// as opposed to getting notifications via an asynchronous IRQ (Interrupt Request).
    pub fn setup_iopoll(&mut self) -> &mut Self {
        self.params.flags |= sys::IORING_SETUP_IOPOLL;
        self
    }

    /// When this flag is specified, a kernel thread is created to perform submission queue polling.
    /// An io_uring instance configured in this way enables an application to issue I/O
    /// without ever context switching into the kernel.
    pub fn setup_sqpoll(&mut self, idle: impl Into<Option<u32>>) -> &mut Self {
        self.params.flags |= sys::IORING_SETUP_SQPOLL;
        self.params.sq_thread_idle = idle.into().unwrap_or(0);
        self
    }

    /// If this flag is specified,
    /// then the poll thread will be bound to the cpu set in the value.
    /// This flag is only meaningful when [Builder::setup_sqpoll] is enabled.
    pub fn setup_sqpoll_cpu(&mut self, n: u32) -> &mut Self {
        self.params.flags |= sys::IORING_SETUP_SQ_AFF;
        self.params.sq_thread_cpu = n;
        self
    }

    /// Create the completion queue with struct `io_uring_params.cq_entries` entries.
    /// The value must be greater than entries, and may be rounded up to the next power-of-two.
    pub fn setup_cqsize(&mut self, n: u32) -> &mut Self {
        self.params.flags |= sys::IORING_SETUP_CQSIZE;
        self.params.cq_entries = n;
        self
    }

    pub fn setup_clamp(&mut self) -> &mut Self {
        self.params.flags |= sys::IORING_SETUP_CLAMP;
        self
    }

    pub fn setup_attach_wq(&mut self, fd: RawFd) -> &mut Self {
        self.params.flags |= sys::IORING_SETUP_ATTACH_WQ;
        self.params.wq_fd = fd as _;
        self
    }

    /// Build a [IoUring].
    #[inline]
    pub fn build(&self, entries: u32) -> io::Result<IoUring> {
        let ring = IoUring::with_params(entries, self.params)?;

        if self.dontfork {
            ring.memory.sq_mmap.dontfork()?;
            ring.memory.sqe_mmap.dontfork()?;
            if let Some(cq_mmap) = ring.memory.cq_mmap.as_ref() {
                cq_mmap.dontfork()?;
            }
        }

        Ok(ring)
    }
}

impl Parameters {
    pub fn is_setup_sqpoll(&self) -> bool {
        self.0.flags & sys::IORING_SETUP_SQPOLL != 0
    }

    pub fn is_setup_iopoll(&self) -> bool {
        self.0.flags & sys::IORING_SETUP_IOPOLL != 0
    }

    /// If this flag is set, the two SQ and CQ rings can be mapped with a single `mmap(2)` call.
    /// The SQEs must still be allocated separately.
    /// This brings the necessary `mmap(2)` calls down from three to two.
    pub fn is_feature_single_mmap(&self) -> bool {
        self.0.features & sys::IORING_FEAT_SINGLE_MMAP != 0
    }

    /// If this flag is set, io_uring supports never dropping completion events. If a completion
    /// event occurs and the CQ ring is full, the kernel stores the event internally until such a
    /// time that the CQ ring has room for more entries.
    pub fn is_feature_nodrop(&self) -> bool {
        self.0.features & sys::IORING_FEAT_NODROP != 0
    }

    /// If this flag is set, applications can be certain that any data for async offload has been consumed
    /// when the kernel has consumed the SQE
    pub fn is_feature_submit_stable(&self) -> bool {
        self.0.features & sys::IORING_FEAT_SUBMIT_STABLE != 0
    }

    /// If this flag is set, applications can specify offset == -1 with
    /// `IORING_OP_{READV,WRITEV}`, `IORING_OP_{READ,WRITE}_FIXED`, and `IORING_OP_{READ,WRITE}`
    /// to mean current file position, which behaves like `preadv2(2)` and `pwritev2(2)` with offset == -1.
    /// It’ll use (and update) the current file position.
    ///
    /// This obviously comes with the caveat that if the application has multiple reads or writes in flight,
    /// then the end result will not be as expected.
    /// This is similar to threads sharing a file descriptor and doing IO using the current file position.
    pub fn is_feature_rw_cur_pos(&self) -> bool {
        self.0.features & sys::IORING_FEAT_RW_CUR_POS != 0
    }

    /// If this flag is set, then io_uring guarantees that both sync and async execution of
    /// a request assumes the credentials of the task that called `io_uring_enter(2)` to queue the requests.
    /// If this flag isn’t set, then requests are issued with the credentials of the task that originally registered the io_uring.
    /// If only one task is using a ring, then this flag doesn’t matter as the credentials will always be the same.
    /// Note that this is the default behavior,
    /// tasks can still register different personalities through
    /// `io_uring_register(2)` with `IORING_REGISTER_PERSONALITY` and specify the personality to use in the sqe.
    pub fn is_feature_cur_personality(&self) -> bool {
        self.0.features & sys::IORING_FEAT_CUR_PERSONALITY != 0
    }

    #[cfg(feature = "unstable")]
    pub fn is_feature_fast_poll(&self) -> bool {
        self.0.features & sys::IORING_FEAT_FAST_POLL != 0
    }

    pub fn sq_entries(&self) -> u32 {
        self.0.sq_entries
    }

    pub fn cq_entries(&self) -> u32 {
        self.0.cq_entries
    }
}

impl AsRawFd for IoUring {
    fn as_raw_fd(&self) -> RawFd {
        self.fd.as_raw_fd()
    }
}