1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
//! `IntSpan` handles of sets containing integer spans.
//!
//! # SYNOPSIS
//!
//! ```
//! use intspan::IntSpan;
//!
//! let mut set = IntSpan::new();
//! for i in vec![1, 2, 3, 5, 7, 9] {
//!     set.add_n(i);
//! }
//! set.add_pair(100, 10000);
//! set.remove_n(1000);
//!
//! let expected = "1-3,5,7,9,100-999,1001-10000";
//! # assert_eq!(set.to_string(), expected);
//! # assert_eq!(set.cardinality(), 9906);
//! # assert_eq!(set.is_empty(), false);
//! # assert_eq!(set.is_universal(), false);
//! # assert_eq!(set.is_infinite(), false);
//! # assert_eq!(set.is_finite(), true);
//! # assert_eq!(set.is_pos_inf(), false);
//! # assert_eq!(set.is_neg_inf(), false);
//! ```
//!
//! ```
//! # use intspan::IntSpan;
//! let set = IntSpan::from("1-3,5,7,9,100-999,1001-10000");
//! # assert_eq!(set.to_string(), "1-3,5,7,9,100-999,1001-10000");
//! # assert_eq!(set.cardinality(), 9906);
//! ```
//!
//! # DESCRIPTION
//!
//! `IntSpan` represents sets of integers as a number of inclusive ranges, for example
//! `1-10,19-23,45-48`. Because many of its operations involve linear searches of the list of ranges its
//! overall performance tends to be proportional to the number of distinct ranges. This is fine for
//! small sets but suffers compared to other possible set representations (bit vectors, hash keys) when
//! the number of ranges grows large.
//!
//! This module also represents sets as ranges of values but stores those ranges in order and uses a
//! binary search for many internal operations so that overall performance tends towards O log N where N
//! is the number of ranges.
//!
//! The internal representation used by this module is extremely simple: a set is represented as a list
//! of integers. Integers in even numbered positions (0, 2, 4 etc) represent the start of a run of
//! numbers while those in odd numbered positions represent the ends of runs. As an example the set (1,
//! 3-7, 9, 11, 12) would be represented internally as (1, 2, 3, 8, 11, 13).
//!
//! Sets may be infinite - assuming you're prepared to accept that infinity is actually no more than a
//! fairly large integer. Specifically the constants `neg_inf` and `pos_inf` are defined to be (-2^31+1)
//! and (2^31-2) respectively. To create an infinite set invert an empty one:
//!
//! ```
//! # use intspan::IntSpan;
//! let mut set = IntSpan::new();
//! set.invert();
//! # let expected = format!("{}-{}", set.get_neg_inf(), set.get_pos_inf());
//! # assert_eq!(set.to_string(), expected);
//! # assert_eq!(set.is_empty(), false);
//! # assert_eq!(set.is_universal(), true);
//! # assert_eq!(set.is_infinite(), true);
//! # assert_eq!(set.is_finite(), false);
//! # assert_eq!(set.is_pos_inf(), true);
//! # assert_eq!(set.is_neg_inf(), true);
//! ```
//!
//! Sets need only be bounded in one direction - for example this is the set of all positive integers
//! (assuming you accept the slightly feeble definition of infinity we're using):
//!
//! ```
//! # use intspan::IntSpan;
//! let mut set = IntSpan::new();
//! set.add_pair(1, set.get_pos_inf());
//! # let expected = format!("{}-{}", 1, set.get_pos_inf());
//! # assert_eq!(set.to_string(), expected);
//! # assert_eq!(set.is_empty(), false);
//! # assert_eq!(set.is_universal(), false);
//! # assert_eq!(set.is_infinite(), true);
//! # assert_eq!(set.is_finite(), false);
//! # assert_eq!(set.is_pos_inf(), true);
//! # assert_eq!(set.is_neg_inf(), false);
//! ```
//!
//! This Rust crate is ported from the Java class `jintspan` and the Perl module `AlignDB::IntSpan`,
//! which contains many codes from `Set::IntSpan`, `Set::IntSpan::Fast` and `Set::IntSpan::Island`.
//!

use std::fmt;
use std::vec::Vec;

#[derive(Default)]
pub struct IntSpan {
    edges: Vec<i32>,
    pos_inf: i32,
    neg_inf: i32,
    empty_string: String,
}

//----------------------------------------------------------
// Set contents
//----------------------------------------------------------

impl IntSpan {
    pub fn new() -> Self {
        IntSpan {
            edges: Vec::new(),
            pos_inf: 2_147_483_647 - 1, // INT_MAX - 1, Real Largest int is POS_INF - 1
            neg_inf: -2_147_483_648 + 1, // INT_MIN + 1
            empty_string: "-".to_string(),
        }
    }

    pub fn from<S>(runlist: S) -> Self
    where
        S: Into<String>,
    {
        let s = runlist.into();

        let mut new = Self::new();
        new.add_runlist(s);

        new
    }

    pub fn get_neg_inf(&self) -> i32 {
        self.neg_inf.clone()
    }

    pub fn get_pos_inf(&self) -> i32 {
        self.pos_inf.clone() - 1
    }

    pub fn clear(&mut self) {
        self.edges.clear();
    }

    pub fn edge_size(&self) -> usize {
        self.edges.len()
    }

    pub fn span_size(&self) -> usize {
        self.edge_size() / 2
    }

    pub fn to_string(&self) -> String {
        if self.is_empty() {
            return self.empty_string.clone();
        }

        let mut runlist = "".to_string();

        for i in 0..self.span_size() {
            let lower = *self.edges.get(i * 2).unwrap();
            let upper = *self.edges.get(i * 2 + 1).unwrap() - 1;

            let mut buf = "".to_string();
            if i != 0 {
                buf.push_str(",");
            }

            if lower == upper {
                buf.push_str(lower.to_string().as_str());
            } else {
                buf.push_str(format!("{}-{}", lower, upper).as_str());
            }

            runlist.push_str(buf.as_str());
        }

        runlist
    }

    pub fn to_vec(&self) -> Vec<i32> {
        let mut elements: Vec<i32> = Vec::new();

        for i in 0..self.span_size() {
            let lower = *self.edges.get(i * 2).unwrap();
            let upper = *self.edges.get(i * 2 + 1).unwrap() - 1;

            let span_len = upper - lower + 1;
            for j in 0..span_len {
                elements.push(lower + j);
            }
        }

        elements
    }

    pub fn ranges(&self) -> Vec<i32> {
        let mut ranges: Vec<i32> = Vec::new();

        for i in 0..self.edges.len() {
            // odd index means upper
            if (i & 1) == 1 {
                ranges.push(*self.edges.get(i).unwrap() - 1);
            } else {
                ranges.push(*self.edges.get(i).unwrap());
            }
        }

        ranges
    }

    pub fn contains(&self, n: i32) -> bool {
        let pos = self.find_pos(n + 1, 0);
        (pos & 1) == 1
    }

    pub fn min(&self) -> i32 {
        if self.is_empty() {
            panic!("Can't get extrema for empty IntSpan");
        }

        *self.edges.first().unwrap()
    }

    pub fn max(&self) -> i32 {
        if self.is_empty() {
            panic!("Can't get extrema for empty IntSpan");
        }

        *self.edges.last().unwrap() - 1
    }
}

//----------------------------------------------------------
// Set cardinality
//----------------------------------------------------------
impl IntSpan {
    pub fn cardinality(&self) -> i32 {
        let mut cardinality: i32 = 0;

        if self.is_empty() {
            return cardinality;
        }

        for i in 0..self.span_size() {
            let lower = *self.edges.get(i * 2).unwrap();
            let upper = *self.edges.get(i * 2 + 1).unwrap() - 1;

            cardinality += upper - lower + 1;
        }

        cardinality
    }

    pub fn is_empty(&self) -> bool {
        self.edges.is_empty()
    }

    pub fn is_neg_inf(&self) -> bool {
        *self.edges.first().unwrap() == self.neg_inf
    }

    pub fn is_pos_inf(&self) -> bool {
        *self.edges.last().unwrap() == self.pos_inf
    }

    pub fn is_infinite(&self) -> bool {
        self.is_neg_inf() || self.is_pos_inf()
    }

    pub fn is_finite(&self) -> bool {
        !self.is_infinite()
    }

    pub fn is_universal(&self) -> bool {
        self.edge_size() == 2 && self.is_pos_inf() && self.is_neg_inf()
    }
}

//----------------------------------------------------------
// Member operations (mutate original set)
//----------------------------------------------------------
impl IntSpan {
    pub fn add_pair(&mut self, mut lower: i32, mut upper: i32) {
        if lower > upper {
            panic!("Bad order: {},{}", lower, upper)
        }

        upper += 1;

        let mut lower_pos = self.find_pos(lower, 0);
        let mut upper_pos = self.find_pos(upper + 1, lower_pos);

        if lower_pos & 1 == 1 {
            lower_pos -= 1;
            lower = *self.edges.get(lower_pos).unwrap();
        }

        if upper_pos & 1 == 1 {
            upper = *self.edges.get(upper_pos).unwrap();
            upper_pos += 1;
        }

        for _i in lower_pos..upper_pos {
            self.edges.remove(lower_pos);
        }
        self.edges.insert(lower_pos, lower);
        self.edges.insert(lower_pos + 1, upper);
    }

    pub fn add_n(&mut self, n: i32) {
        self.add_pair(n, n);
    }

    pub fn add_range(&mut self, ranges: &Vec<i32>) {
        if ranges.len() % 2 != 0 {
            panic!("Number of ranges must be even")
        }

        for i in 0..(ranges.len() / 2) {
            let lower = *ranges.get(i * 2).unwrap();
            let upper = *ranges.get(i * 2 + 1).unwrap();

            self.add_pair(lower, upper);
        }

        // CAUTIONS: can't capture bad orders
        //        // When this IntSpan is empty, just convert ranges to edges
        //        if self.is_empty() {
        //            for i in 0..ranges.len() {
        //                // odd index means upper
        //                if (i & 1) == 1 {
        //                    self.edges.push(*ranges.get(i).unwrap() + 1);
        //                } else {
        //                    self.edges.push(*ranges.get(i).unwrap());
        //                }
        //            }
        //        } else {
        //            for i in 0..(ranges.len() / 2) {
        //                let lower = *ranges.get(i * 2).unwrap();
        //                let upper = *ranges.get(i * 2 + 1).unwrap();
        //
        //                self.add_pair(lower, upper);
        //            }
        //        }
    }

    pub fn merge(&mut self, other: &Self) {
        let ranges = other.ranges();

        self.add_range(&ranges);
    }

    pub fn add_vec(&mut self, ints: &Vec<i32>) {
        let ranges = self.list_to_ranges(ints);

        self.add_range(&ranges);
    }

    // https://hermanradtke.com/2015/05/06/creating-a-rust-function-that-accepts-string-or-str.html
    pub fn add_runlist<S>(&mut self, runlist: S)
    where
        S: Into<String>,
    {
        let s = runlist.into();
        // skip empty runlist
        if !s.is_empty() && !s.eq(&self.empty_string) {
            let ranges = self.runlist_to_ranges(&s);
            self.add_range(&ranges);
        }
    }

    pub fn invert(&mut self) {
        if self.is_empty() {
            // Universal set
            self.edges.push(self.neg_inf);
            self.edges.push(self.pos_inf);
        } else {
            // Either add or remove infinity from each end. The net effect is always an even number
            // of additions and deletions

            if self.is_neg_inf() {
                self.edges.remove(0); // shift
            } else {
                self.edges.insert(0, self.neg_inf); // unshift
            }

            if self.is_pos_inf() {
                self.edges.pop(); // pop
            } else {
                self.edges.push(self.pos_inf); // push
            }
        }
    }

    pub fn remove_pair(&mut self, lower: i32, upper: i32) {
        self.invert();
        self.add_pair(lower, upper);
        self.invert();
    }

    pub fn remove_n(&mut self, n: i32) {
        self.remove_pair(n, n);
    }

    pub fn remove_range(&mut self, ranges: &Vec<i32>) {
        if ranges.len() % 2 != 0 {
            panic!("Number of ranges must be even");
        }

        self.invert();
        self.add_range(ranges);
        self.invert();
    }

    pub fn subtract(&mut self, other: &Self) {
        let ranges = other.ranges();

        self.remove_range(&ranges);
    }

    pub fn remove_vec(&mut self, ints: &Vec<i32>) {
        let ranges = self.list_to_ranges(ints);

        self.remove_range(&ranges);
    }

    pub fn remove_runlist<S>(&mut self, runlist: S)
    where
        S: Into<String>,
    {
        let s = runlist.into();
        // skip empty runlist
        if !s.is_empty() && !s.eq(&self.empty_string) {
            let ranges = self.runlist_to_ranges(&s);
            self.remove_range(&ranges);
        }
    }
}

//----------------------------------------------------------
// Set binary operations (create new set)
//----------------------------------------------------------
impl IntSpan {
    pub fn copy(&self) -> Self {
        IntSpan {
            edges: self.edges.clone(),
            pos_inf: 2_147_483_647 - 1, // INT_MAX - 1, Real Largest int is POS_INF - 1
            neg_inf: -2_147_483_648 + 1, // INT_MIN + 1
            empty_string: "-".to_string(),
        }
    }

    pub fn union(&self, other: &Self) -> Self {
        let mut new = self.copy();
        new.merge(&other);
        new
    }

    pub fn complement(&self) -> Self {
        let mut new = self.copy();
        new.invert();
        new
    }

    pub fn diff(&self, other: &Self) -> Self {
        if self.is_empty() {
            Self::new()
        } else {
            let mut new = self.copy();
            new.subtract(&other);
            new
        }
    }

    pub fn intersect(&self, other: &Self) -> Self {
        if self.is_empty() || other.is_empty() {
            Self::new()
        } else {
            let mut new = self.complement();
            new.merge(&other.complement());
            new.invert();
            new
        }
    }

    pub fn xor(&self, other: &Self) -> Self {
        let mut new = self.union(&other);
        let intersect = self.intersect(&other);
        new.subtract(&intersect);
        new
    }
}

//----------------------------------------------------------
// Set relations
//----------------------------------------------------------
impl IntSpan {
    pub fn equals(&self, other: &Self) -> bool {
        let edges = &self.edges;
        let edges_other = &other.edges;

        if edges.len() != edges_other.len() {
            return false;
        }

        for i in 0..edges.len() {
            if edges.get(i) != edges_other.get(i) {
                return false;
            }
        }

        true
    }

    pub fn subset(&self, other: &Self) -> bool {
        self.diff(&other).is_empty()
    }

    pub fn superset(&self, other: &Self) -> bool {
        other.diff(&self).is_empty()
    }
}

//----------------------------------------------------------
// Spans Ops
//----------------------------------------------------------
impl IntSpan {
    pub fn cover(&self) -> Self {
        let mut new = IntSpan::new();
        if !self.is_empty() {
            new.add_pair(self.min(), self.max());
        }
        new
    }

    pub fn holes(&self) -> Self {
        let mut new = IntSpan::new();
        if self.is_empty() || self.is_universal() {
            // empty and universal set have no holes
            return new;
        }
        let complement = self.complement();
        let mut ranges = complement.ranges();

        // Remove infinite arms of complement set
        if complement.is_neg_inf() {
            ranges.remove(0);
            ranges.remove(0);
        }
        if complement.is_pos_inf() {
            ranges.pop();
            ranges.pop();
        }

        new.add_range(&ranges);

        new
    }

    pub fn inset(&self, n: i32) -> Self {
        let mut new = IntSpan::new();

        for i in 0..self.span_size() {
            let mut lower = *self.edges.get(i * 2).unwrap();
            let mut upper = *self.edges.get(i * 2 + 1).unwrap() - 1;

            if lower != self.get_neg_inf() {
                lower += n;
            }
            if upper != self.get_pos_inf() {
                upper -= n;
            }

            if lower <= upper {
                new.add_pair(lower, upper);
            }
        }

        new
    }

    pub fn trim(&self, n: i32) -> Self {
        self.inset(n)
    }

    pub fn pad(&self, n: i32) -> Self {
        self.inset(-n)
    }

    pub fn excise(&self, min_len: i32) -> Self {
        let mut new = IntSpan::new();

        for i in 0..self.span_size() {
            let lower = *self.edges.get(i * 2).unwrap();
            let upper = *self.edges.get(i * 2 + 1).unwrap() - 1;

            let span_len = upper - lower + 1;
            if span_len >= min_len {
                new.add_pair(lower, upper);
            }
        }

        new
    }

    pub fn fill(&self, max_len: i32) -> Self {
        let mut new = self.copy();
        let holes = self.holes();

        for i in 0..holes.span_size() {
            let lower = *holes.edges.get(i * 2).unwrap();
            let upper = *holes.edges.get(i * 2 + 1).unwrap() - 1;

            let span_len = upper - lower + 1;
            if span_len <= max_len {
                new.add_pair(lower, upper);
            }
        }

        new
    }
}

//----------------------------------------------------------
// TODO: Inter-set operations
//----------------------------------------------------------

//----------------------------------------------------------
// TODO: Islands
//----------------------------------------------------------

//----------------------------------------------------------
// Aliases
//----------------------------------------------------------
impl IntSpan {
    pub fn size(&self) -> i32 {
        self.cardinality()
    }

    pub fn runlist(&self) -> String {
        self.to_string()
    }

    pub fn elements(&self) -> Vec<i32> {
        self.to_vec()
    }
}

//----------------------------------------------------------
// Private methods
//----------------------------------------------------------

impl IntSpan {
    fn find_pos(&self, val: i32, mut low: usize) -> usize {
        let mut high = self.edge_size();

        while low < high {
            let mid = (low + high) / 2;
            if val < *self.edges.get(mid).unwrap() {
                high = mid;
            } else if val > *self.edges.get(mid).unwrap() {
                low = mid + 1;
            } else {
                return mid;
            }
        }

        low
    }

    fn list_to_ranges(&self, ints: &Vec<i32>) -> Vec<i32> {
        let mut ranges: Vec<i32> = Vec::new();

        let mut ints = ints.clone();
        ints.sort_unstable();
        ints.dedup();

        let len = ints.len();
        let mut pos: usize = 0;

        while pos < len {
            let mut end = pos + 1;
            while (end < len) && (ints[end] <= ints[end - 1] + 1) {
                end += 1;
            }
            ranges.push(ints[pos]);
            ranges.push(ints[end - 1]);
            pos = end;
        }

        ranges
    }

    fn runlist_to_ranges(&self, runlist: &String) -> Vec<i32> {
        let mut ranges: Vec<i32> = Vec::new();

        let bytes = runlist.as_bytes();

        let radix = 10;
        let mut idx = 0; // index in runlist
        let len = bytes.len();

        let mut lower_is_neg = false;
        let mut upper_is_neg = false;
        let mut in_upper = false;

        while idx < len {
            let mut i = 0; // index in one run
            if *bytes.get(idx).unwrap() == b'-' {
                lower_is_neg = true;
                i += 1;
            }

            // ported from Java Integer.parseInt()
            let mut lower: i32 = 0;
            let mut upper: i32 = 0;

            while idx + i < len {
                let ch = bytes[idx + i];
                if ch >= b'0' && ch <= b'9' {
                    if !in_upper {
                        lower *= radix;
                        lower -= (ch as char).to_digit(10).unwrap() as i32;
                    } else {
                        upper *= radix;
                        upper -= (ch as char).to_digit(10).unwrap() as i32;
                    }
                } else if ch == b'-' {
                    if !in_upper {
                        in_upper = true;
                        if *bytes.get(idx + i + 1).unwrap() == b'-' {
                            upper_is_neg = true;
                        }
                    }
                } else if ch == b',' {
                    i += 1;
                    break; // end of run
                } else {
                    panic!(
                        "Number format error: {} at {} of {}",
                        ch as char,
                        idx + i,
                        runlist
                    );
                }

                i += 1;
            }

            if !in_upper {
                ranges.push(if lower_is_neg { lower } else { -lower }); // add lower
                ranges.push(if lower_is_neg { lower } else { -lower }); // add lower again
            } else {
                ranges.push(if lower_is_neg { lower } else { -lower }); // add lower
                ranges.push(if upper_is_neg { upper } else { -upper }); // add upper
            }

            // reset boolean flags
            lower_is_neg = false;
            upper_is_neg = false;
            in_upper = false;

            // start next run
            idx += i;
        }

        ranges
    }
}

impl fmt::Display for IntSpan {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.to_string())?;
        Ok(())
    }
}