1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#![no_std]
#![cfg_attr(not(feature = "std"), feature(alloc))]
#![warn(missing_docs)]
//! A simple and generic implementation of an immutable interval tree.

#[cfg(feature = "std")]
extern crate std;
#[cfg(not(feature = "std"))]
extern crate alloc;

extern crate smallvec;

use core::ops::Range;
use core::iter::FromIterator;
use core::fmt::{Debug, Formatter, Result as FmtResult};
use core::slice::Iter;
use core::cmp;
#[cfg(feature = "std")]
use std::vec::{Vec, IntoIter};
#[cfg(not(feature = "std"))]
use alloc::vec::{Vec, IntoIter};
use smallvec::SmallVec;

/// An element of an interval tree.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Element<K, V> {
    /// The range associated with this element.
    pub range: Range<K>,
    /// The value associated with this element.
    pub value: V,
}

impl<K, V> From<(Range<K>, V)> for Element<K, V> {
    fn from(tup: (Range<K>, V)) -> Element<K, V> {
        let (range, value) = tup;
        Element { range, value }
    }
}

#[derive(Clone, Debug, Hash)]
struct Node<K, V>{
    element: Element<K, V>,
    max: K,
}

/// A simple and generic implementation of an immutable interval tree.
///
/// To build it, always use `FromIterator`. This is not very optimized
/// as it takes `O(log n)` stack (it uses recursion) but runs in `O(n log n)`.
#[derive(Clone, Debug, Hash)]
pub struct IntervalTree<K, V> {
    data: Vec<Node<K, V>>,
}

impl<K: Ord + Clone, V, I: Into<Element<K, V>>> FromIterator<I> for IntervalTree<K, V> {
    fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
        let mut nodes: Vec<_> = iter.into_iter().map(|i| i.into())
            .map(|element| Node { max: element.range.end.clone(), element }).collect();

        nodes.sort_unstable_by(|a, b| a.element.range.start.cmp(&b.element.range.start));

        if !nodes.is_empty() {
            Self::update_max(&mut nodes);
        }

        IntervalTree { data: nodes }
    }
}

/// An iterator over all the elements in the tree (in no particular order).
pub struct TreeIter<'a, K: 'a, V: 'a>(Iter<'a, Node<K, V>>);

impl<'a, K: 'a, V: 'a> Iterator for TreeIter<'a, K, V> {
    type Item = &'a Element<K, V>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|x| &x.element)
    }
}

impl<'a, K: 'a + Ord, V: 'a> IntoIterator for &'a IntervalTree<K, V> {
    type Item = &'a Element<K, V>;
    type IntoIter = TreeIter<'a, K, V>;

    fn into_iter(self) -> TreeIter<'a, K, V> {
        self.iter()
    }
}

/// An iterator that moves out of an interval tree.
pub struct TreeIntoIter<K, V>(IntoIter<Node<K, V>>);

impl<K, V> IntoIterator for IntervalTree<K, V> {
    type Item = Element<K, V>;
    type IntoIter = TreeIntoIter<K, V>;

    fn into_iter(self) -> TreeIntoIter<K, V> {
        TreeIntoIter(self.data.into_iter())
    }
}

impl<K, V> Iterator for TreeIntoIter<K, V> {
    type Item = Element<K, V>;

    fn next(&mut self) -> Option<Element<K, V>> {
        self.0.next().map(|x| x.element)
    }
}

impl<K: Ord + Clone, V> IntervalTree<K, V> {
    fn update_max(nodes: &mut [Node<K, V>]) -> K {
        assert!(!nodes.is_empty());
        let i = nodes.len() / 2;
        if nodes.len() > 1 {
            {
                let (left, rest) = nodes.split_at_mut(i);
                if !left.is_empty() {
                    rest[0].max = cmp::max(rest[0].max.clone(), Self::update_max(left));
                }
            }

            {
                let (rest, right) = nodes.split_at_mut(i + 1);
                if !right.is_empty() {
                    rest[i].max = cmp::max(rest[i].max.clone(), Self::update_max(right));
                }
            }
        }

        nodes[i].max.clone()
    }
}

impl<K: Ord, V> IntervalTree<K, V> {
    fn todo(&self) -> TodoVec {
        let mut todo = SmallVec::new();
        if !self.data.is_empty() {
            todo.push((0, self.data.len()));
        }
        todo
    }

    /// Queries the interval tree for all elements overlapping a given interval.
    ///
    /// This runs in `O(log n + m)`.
    pub fn query(&self, range: Range<K>) -> QueryIter<K, V> {
        QueryIter {
            todo: self.todo(),
            tree: self,
            query: Query::Range(range),
        }
    }

    /// Queries the interval tree for all elements containing a given point.
    ///
    /// This runs in `O(log n + m)`.
    pub fn query_point(&self, point: K) -> QueryIter<K, V> {
        QueryIter {
            todo: self.todo(),
            tree: self,
            query: Query::Point(point),
        }
    }

    /// Returns an iterator over all elements in the tree (in no particular order).
    pub fn iter(&self) -> TreeIter<K, V> {
        TreeIter(self.data.iter())
    }
}

#[derive(Clone)]
enum Query<K> {
    Point(K),
    Range(Range<K>),
}

impl<K: Ord> Query<K> {
    fn point(&self) -> &K {
        match *self {
            Query::Point(ref k) => k,
            Query::Range(ref r) => &r.start,
        }
    }

    fn go_right(&self, start: &K) -> bool {
        match *self {
            Query::Point(ref k) => k >= start,
            Query::Range(ref r) => &r.end > start,
        }
    }

    fn intersect(&self, range: &Range<K>) -> bool {
        match *self {
            Query::Point(ref k) => k < &range.end,
            Query::Range(ref r) => r.end > range.start && r.start < range.end,
        }
    }
}

type TodoVec = SmallVec<[(usize, usize); 16]>;

/// Iterator for query results.
pub struct QueryIter<'a, K: 'a, V: 'a> {
    tree: &'a IntervalTree<K, V>,
    todo: TodoVec,
    query: Query<K>,
}

impl<'a, K: Ord + Clone, V> Clone for QueryIter<'a, K, V> {
    fn clone(&self) -> Self {
        QueryIter {
            tree: self.tree,
            todo: self.todo.clone(),
            query: self.query.clone(),
        }
    }
}

impl<'a, K: Ord + Clone + Debug, V: Debug> Debug for QueryIter<'a, K, V> {
    fn fmt(&self, fmt: &mut Formatter) -> FmtResult {
        let v: Vec<_> = (*self).clone().collect();
        write!(fmt, "{:?}", v)
    }
}

impl<'a, K: Ord, V> Iterator for QueryIter<'a, K, V> {
    type Item = &'a Element<K, V>;

    fn next(&mut self) -> Option<&'a Element<K, V>> {
        while let Some((s, l)) = self.todo.pop() {
            let i = s + l/2;

            let node = &self.tree.data[i];
            if self.query.point() < &node.max {
                // push left
                {
                    let leftsz = i - s;
                    if leftsz > 0 {
                        self.todo.push((s, leftsz));
                    }
                }

                if self.query.go_right(&node.element.range.start) {
                    // push right
                    {
                        let rightsz = l + s - i - 1;
                        if rightsz > 0 {
                            self.todo.push((i + 1, rightsz));
                        }
                    }

                    // finally, search this
                    if self.query.intersect(&node.element.range) {
                        return Some(&node.element);
                    }
                }
            }
        }
        None
    }
}

#[cfg(test)]
mod tests {
    use core::iter;
    use super::*;

    fn verify(tree: &IntervalTree<u32, u32>, i: u32, expected: &[u32]) {
        let mut v1: Vec<_> = tree.query_point(i).map(|x| x.value).collect();
        v1.sort();
        let mut v2: Vec<_> = tree.query(i..(i+1)).map(|x| x.value).collect();
        v2.sort();
        assert_eq!(v1, expected);
        assert_eq!(v2, expected);
    }

    #[test]
    fn it_works() {
        let tree: IntervalTree<u32, u32> = [
            (0..3, 1),
            (1..4, 2),
            (2..5, 3),
            (3..6, 4),
            (4..7, 5),
            (5..8, 6),
            (4..5, 7),
            (2..7, 8),
        ].iter().cloned().collect();


        verify(&tree, 0, &[1]);
        verify(&tree, 1, &[1, 2]);
        verify(&tree, 2, &[1, 2, 3, 8]);
        verify(&tree, 3, &[2, 3, 4, 8]);
        verify(&tree, 4, &[3, 4, 5, 7, 8]);
        verify(&tree, 5, &[4, 5, 6, 8]);
        verify(&tree, 6, &[5, 6, 8]);
        verify(&tree, 7, &[6]);
        verify(&tree, 8, &[]);
        verify(&tree, 9, &[]);
    }

    #[test]
    fn empty() {
        let tree: IntervalTree<u32, u32> = iter::empty::<Element<u32, u32>>().collect();
        verify(&tree, 42, &[]);
    }
}