1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
/*
Line segment intersection detection library.

Copyright (C) 2021 eadf https://github.com/eadf

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like
this when it starts in an interactive mode:

intersection2d Copyright (C) 2021 eadf

This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it under certain
conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands might
be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary. For
more information on this, and how to apply and follow the GNU GPL, see <https://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General Public
License instead of this License. But first, please read <https://www.gnu.org/
licenses /why-not-lgpl.html>.
 */

#![deny(non_camel_case_types)]
#![deny(unused_parens)]
#![deny(non_upper_case_globals)]
#![deny(unused_qualifications)]
#![deny(unused_results)]
#![deny(unused_imports)]

use core::fmt;
use geo::algorithm::intersects::Intersects;
use num_traits::{Float, Zero};
use thiserror::Error;

pub mod algorithm;

#[derive(Error, Debug)]
pub enum IntersectError {
    #[error("Something bad happened")]
    InternalError(String),
    #[error("No NaN, inf etc. are allowed")]
    InvalidData(String),
    #[error("When searching for intersections in LineStrings the 'ignore_end_point_intersections' parameter must be set to 'true'.")]
    InvalidSearchParameter(String),
    #[error("Results already taken from the algorithm data struct")]
    ResultsAlreadyTaken(String),
}

/// Utility function converting an array slice into a vec of Line
#[allow(dead_code)]
pub fn to_lines<U, T>(points: &[[U; 4]]) -> Vec<geo::Line<T>>
where
    U: num_traits::ToPrimitive + Copy,
    T: Float + approx::UlpsEq + geo::CoordFloat,
    T::Epsilon: Copy,
{
    let mut rv = Vec::with_capacity(points.len());
    for p in points.iter() {
        rv.push(geo::Line::<T>::new(
            geo::Coordinate {
                x: T::from(p[0]).unwrap(),
                y: T::from(p[1]).unwrap(),
            },
            geo::Coordinate {
                x: T::from(p[2]).unwrap(),
                y: T::from(p[3]).unwrap(),
            },
        ));
    }
    rv
}

/// Get any intersection point between line segment and point.
/// Inspired by <https://stackoverflow.com/a/17590923>
pub fn intersect_line_point<T>(
    line: &geo::Line<T>,
    point: &geo::Coordinate<T>,
) -> Option<Intersection<T>>
where
    T: Float + Zero + geo::CoordFloat + approx::AbsDiffEq + approx::UlpsEq,
    T::Epsilon: Copy,
{
    // take care of end point equality
    if approx::ulps_eq!(&line.start.x, &point.x) && approx::ulps_eq!(&line.start.y, &point.y) {
        return Some(Intersection::Intersection(*point));
    }
    if approx::ulps_eq!(&line.end.x, &point.x) && approx::ulps_eq!(&line.end.y, &point.y) {
        return Some(Intersection::Intersection(*point));
    }

    let x1 = line.start.x;
    let x2 = line.end.x;
    let y1 = line.start.y;
    let y2 = line.end.y;
    let x = point.x;
    let y = point.y;

    let ab = ((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)).sqrt();
    let ap = ((x - x1) * (x - x1) + (y - y1) * (y - y1)).sqrt();
    let pb = ((x2 - x) * (x2 - x) + (y2 - y) * (y2 - y)).sqrt();

    #[cfg(feature = "console_trace")]
    println!("ab={:?}, ap={:?}, pb={:?}, ap+pb={:?}", ab, ap, pb, ap + pb);
    if approx::ulps_eq!(&ab, &(ap + pb)) {
        return Some(Intersection::Intersection(*point));
    }
    None
}

#[allow(dead_code)]
pub enum Intersection<T>
where
    T: Float + Zero + geo::CoordFloat + approx::AbsDiffEq + approx::UlpsEq,
    T::Epsilon: Copy,
{
    // Normal one point intersection
    Intersection(geo::Coordinate<T>),
    // Collinear overlapping
    OverLap(geo::Line<T>),
}

impl<T> Intersection<T>
where
    T: Float + Zero + geo::CoordFloat + approx::AbsDiffEq + approx::UlpsEq,
    T::Epsilon: Copy,
{
    /// return a single, simple intersection point
    pub fn single(&self) -> geo::Coordinate<T> {
        match self {
            Self::OverLap(a) => a.start,
            Self::Intersection(a) => *a,
        }
    }
}

impl<T> fmt::Debug for Intersection<T>
where
    T: Float + Zero + geo::CoordFloat + approx::AbsDiffEq + approx::UlpsEq,
    T::Epsilon: Copy,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::OverLap(a) => a.fmt(f),
            Self::Intersection(a) => a.fmt(f),
        }
    }
}

/// Get any intersection point between line segments.
/// Note that this function always detects endpoint-to-endpoint intersections.
/// Most of this is from <https://stackoverflow.com/a/565282>
#[allow(clippy::many_single_char_names)]
pub fn intersect<T>(one: &geo::Line<T>, other: &geo::Line<T>) -> Option<Intersection<T>>
where
    T: Float + Zero + geo::CoordFloat + approx::AbsDiffEq + approx::UlpsEq,
    T::Epsilon: Copy,
{
    #[allow(clippy::suspicious_operation_groupings)]
    {
        // AABB tests
        if one.end.x > other.end.x
            && one.end.x > other.start.x
            && one.start.x > other.end.x
            && one.start.x > other.start.x
        {
            return None;
        }
        if one.end.x < other.end.x
            && one.end.x < other.start.x
            && one.start.x < other.end.x
            && one.start.x < other.start.x
        {
            return None;
        }
        if one.end.y > other.end.y
            && one.end.y > other.start.y
            && one.start.y > other.end.y
            && one.start.y > other.start.y
        {
            return None;
        }
        if one.end.y < other.end.y
            && one.end.y < other.start.y
            && one.start.y < other.end.y
            && one.start.y < other.start.y
        {
            return None;
        }
    }
    let p = one.start;
    let q = other.start;
    let r = one.end - p;
    let s = other.end - q;

    let r_cross_s = cross_z(&r, &s);
    let q_minus_p = q - p;
    let q_minus_p_cross_r = cross_z(&q_minus_p, &r);

    // If r × s = 0 then the two lines are parallel
    if approx::ulps_eq!(&r_cross_s, &T::zero()) {
        // one (or both) of the lines may be a point
        let one_is_a_point = ulps_eq_c(&one.start, &one.end);
        let other_is_a_point = ulps_eq_c(&other.start, &other.end);
        if one_is_a_point || other_is_a_point {
            if one_is_a_point && other_is_a_point && ulps_eq_c(&one.start, &other.start) {
                return Some(Intersection::Intersection(one.start));
            }
            return if one_is_a_point {
                intersect_line_point(other, &one.start)
            } else {
                intersect_line_point(one, &other.start)
            };
        }

        // If r × s = 0 and (q − p) × r = 0, then the two lines are collinear.
        if approx::ulps_eq!(&q_minus_p_cross_r, &T::zero()) {
            let r_dot_r = dot(&r, &r);
            let r_div_r_dot_r = div(&r, r_dot_r);
            let s_dot_r = dot(&s, &r);
            let t0 = dot(&q_minus_p, &r_div_r_dot_r);
            let t1 = t0 + s_dot_r / r_dot_r;

            Some(Intersection::OverLap(geo::Line::new(
                scale_to_coordinate(&p, &r, t0),
                scale_to_coordinate(&p, &r, t1),
            )))
        } else {
            // If r × s = 0 and (q − p) × r ≠ 0,
            // then the two lines are parallel and non-intersecting.
            None
        }
    } else {
        // the lines are not parallel
        let t = cross_z(&q_minus_p, &div(&s, r_cross_s));
        let u = cross_z(&q_minus_p, &div(&r, r_cross_s));

        // If r × s ≠ 0 and 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1,
        // the two line segments meet at the point p + t r = q + u s.
        if T::zero() <= t && t <= T::one() && T::zero() <= u && u <= T::one() {
            Some(Intersection::Intersection(scale_to_coordinate(&p, &r, t)))
        } else {
            None
        }
    }
}

#[inline(always)]
pub fn scale_to_coordinate<T>(
    point: &geo::Coordinate<T>,
    vector: &geo::Coordinate<T>,
    scale: T,
) -> geo::Coordinate<T>
where
    T: Float + Zero + geo::CoordFloat + approx::AbsDiffEq + approx::UlpsEq,
    T::Epsilon: Copy,
{
    geo::Coordinate {
        x: point.x + scale * vector.x,
        y: point.y + scale * vector.y,
    }
}

#[inline(always)]
/// Divides a 'vector' by 'b'. Obviously, don't feed this with 'b' == 0
fn div<T>(a: &geo::Coordinate<T>, b: T) -> geo::Coordinate<T>
where
    T: Float + Zero + geo::CoordFloat + approx::AbsDiffEq + approx::UlpsEq,
    T::Epsilon: Copy,
{
    geo::Coordinate {
        x: a.x / b,
        y: a.y / b,
    }
}

#[inline(always)]
/// from https://stackoverflow.com/a/565282 :
///  "Define the 2-dimensional vector cross product v × w to be vx wy − vy wx."
/// This function returns the z component of v × w
fn cross_z<T>(a: &geo::Coordinate<T>, b: &geo::Coordinate<T>) -> T
where
    T: Float + Zero + geo::CoordFloat + approx::AbsDiffEq + approx::UlpsEq,
    T::Epsilon: Copy,
{
    a.x * b.y - a.y * b.x
}

#[inline(always)]
/// calculate the dot product of two lines
fn dot<T>(a: &geo::Coordinate<T>, b: &geo::Coordinate<T>) -> T
where
    T: Float + Zero + geo::CoordFloat + approx::AbsDiffEq + approx::UlpsEq,
    T::Epsilon: Copy,
{
    a.x * b.x + a.y * b.y
}

/// Trait for self intersection tests where the end points are excluded
pub trait SelfIntersectingExclusive<T>
where
    T: Float
        + num_traits::ToPrimitive
        + geo::GeoFloat
        + geo::CoordFloat
        + approx::AbsDiffEq
        + approx::UlpsEq,
    T::Epsilon: Copy,
{
    /// Returns true if any line intersects any other line in the collection.
    fn is_self_intersecting(&self) -> Result<bool, IntersectError>;

    /// Returns a list of intersection points and the involved lines, if any intersections are found.
    #[allow(clippy::type_complexity)]
    fn self_intersections<'a>(
        &self,
    ) -> Result<
        Box<dyn ExactSizeIterator<Item = (geo::Coordinate<T>, Vec<usize>)> + 'a>,
        IntersectError,
    >
    where
        T: 'a;
}

/// Trait for self intersection tests where the end points are included
pub trait SelfIntersectingInclusive<T>
where
    T: Float
        + num_traits::ToPrimitive
        + geo::GeoFloat
        + geo::CoordFloat
        + approx::AbsDiffEq
        + approx::UlpsEq,
    T::Epsilon: Copy,
{
    /// Returns true if any line intersects any other line in the collection.
    /// If the end points are identical they will be reported too.
    fn is_self_intersecting_inclusive(&self) -> Result<bool, IntersectError>;

    /// Returns a list of intersection points and the involved lines, if any intersections are found.
    /// If the end points are identical they will be reported too.
    #[allow(clippy::type_complexity)]
    fn self_intersections_inclusive<'a>(
        &self,
    ) -> Result<
        Box<dyn ExactSizeIterator<Item = (geo::Coordinate<T>, Vec<usize>)> + 'a>,
        IntersectError,
    >
    where
        T: 'a;
}

impl<T> SelfIntersectingInclusive<T> for Vec<geo::Line<T>>
where
    T: Float
        + num_traits::ToPrimitive
        + geo::GeoFloat
        + geo::CoordFloat
        + approx::AbsDiffEq
        + approx::UlpsEq,
    T::Epsilon: Copy,
{
    /// Returns true if the LineString is self intersecting.
    /// LineStrings.
    /// ```
    /// # use intersect2d::SelfIntersectingInclusive;
    ///
    /// let lines: Vec<geo::Line<_>> = geo::LineString::from(vec![
    ///     (100., 100.),
    ///     (200., 100.),
    ///     (200., 200.),
    ///     (100., 200.),
    ///     (100., 100.),
    /// ]).lines().collect();
    /// assert!(lines.is_self_intersecting_inclusive().unwrap());
    ///
    /// let lines: Vec<geo::Line<_>> = geo::LineString::from(vec![
    ///    (100., 100.),
    ///    (200., 100.),
    ///    (200., 200.),
    ///    (150., 50.),
    ///    (100., 200.),
    ///    (100., 100.),
    /// ]).lines().collect();
    /// assert!(lines.is_self_intersecting_inclusive().unwrap());
    /// ```
    fn is_self_intersecting_inclusive(&self) -> Result<bool, IntersectError> {
        // at around >25 line segments the sweep-line algorithm is faster
        if self.len() < 25 {
            for l1 in self.iter().enumerate() {
                for l2 in self.iter().skip(l1.0 + 1) {
                    if l1.1.intersects(l2) {
                        return Ok(true);
                    }
                }
            }
            Ok(false)
        } else {
            Ok(algorithm::AlgorithmData::<T>::default()
                .with_ignore_end_point_intersections(false)?
                .with_stop_at_first_intersection(true)?
                .with_ref_lines(self.iter())?
                .compute()?
                .next()
                .is_some())
        }
    }

    /// Returns an iterator containing the found intersections.
    /// ```
    /// # use intersect2d::SelfIntersectingInclusive;
    /// # use intersect2d::ulps_eq_c;
    ///
    /// let lines : Vec<geo::Line<_>>= geo::LineString::from(vec![
    ///     (100., 100.),
    ///     (200., 100.),
    ///     (200., 200.),
    ///     (100., 200.),
    ///     (100., 100.),
    /// ]).lines().collect();
    ///
    /// assert!(!lines.self_intersections_inclusive().expect("err").count()>0);
    ///
    /// let lines : Vec<geo::Line<_>> = geo::LineString::from(vec![
    ///    (100., 100.),
    ///    (200., 100.),
    ///    (200., 200.),
    ///    (150., 50.),
    ///    (100., 200.),
    ///    (100., 100.),
    /// ]).lines().collect();
    /// let rv :Vec<(geo::Coordinate<_>,Vec<usize>)> =
    ///     lines.self_intersections_inclusive().expect("err").collect();
    /// for f in rv.iter() {
    ///   println!("{:?}", f);
    /// }
    /// assert_eq!(rv.len(), 7);
    /// assert!(ulps_eq_c(&rv[0].0, &geo::Coordinate{x: 200., y: 100.0}));
    /// assert_eq!(rv[0].1, vec!(0_usize, 1));
    /// assert!(ulps_eq_c(&rv[1].0, &geo::Coordinate{x: 166.66666666666666, y: 100.0}));
    /// assert_eq!(rv[1].1, vec!(0_usize, 2));
    /// assert!(ulps_eq_c(&rv[2].0, &geo::Coordinate{x: 133.33333333333333, y: 100.0}));
    /// assert_eq!(rv[2].1, vec!(0_usize, 3));
    /// assert!(ulps_eq_c(&rv[3].0, &geo::Coordinate{x: 100., y: 100.0}));
    /// assert_eq!(rv[3].1, vec!(0_usize, 4));
    /// // and more...
    ///
    /// ```
    #[allow(clippy::type_complexity)]
    fn self_intersections_inclusive<'a>(
        &self,
    ) -> Result<
        Box<dyn ExactSizeIterator<Item = (geo::Coordinate<T>, Vec<usize>)> + 'a>,
        IntersectError,
    >
    where
        T: 'a,
    {
        if self.len() < 25 {
            // at around <25 line segments the brute force test is faster

            // sanity check for each line
            for a_line in self.iter() {
                if !a_line.start.x.is_finite()
                    || !a_line.start.y.is_finite()
                    || !a_line.end.x.is_finite()
                    || !a_line.end.y.is_finite()
                {
                    return Err(IntersectError::InvalidData(
                        "Can't check for intersections on non-finite data".to_string(),
                    ));
                }
            }
            let mut rv = Vec::<(geo::Coordinate<T>, Vec<usize>)>::new();
            for l1 in self.iter().enumerate() {
                for l2 in self.iter().enumerate().skip(l1.0 + 1) {
                    if let Some(i) = intersect(l1.1, l2.1) {
                        rv.push((i.single(), vec![l1.0, l2.0]));
                    }
                }
            }
            // This will only return intersections between two lines at a single point
            // If more than that are intersecting it will be reported once for each pair.
            // Todo: fix it!
            Ok(Box::new(rv.into_iter()))
        } else {
            // at around >25 line segments the sweep-line algorithm is faster
            algorithm::AlgorithmData::<T>::default()
                .with_ignore_end_point_intersections(false)?
                .with_stop_at_first_intersection(false)?
                .with_ref_lines(self.iter())?
                .compute()
        }
    }
}

impl<T> SelfIntersectingExclusive<T> for Vec<geo::Line<T>>
where
    T: Float
        + num_traits::ToPrimitive
        + geo::GeoFloat
        + geo::CoordFloat
        + approx::AbsDiffEq
        + approx::UlpsEq,
    T::Epsilon: Copy,
{
    /// Returns true if the LineString is self intersecting.
    /// LineStrings.
    /// ```
    /// # use intersect2d::SelfIntersectingExclusive;
    ///
    /// let lines: Vec<geo::Line<_>> = geo::LineString::from(vec![
    ///     (100., 100.),
    ///     (200., 100.),
    ///     (200., 200.),
    ///     (100., 200.),
    ///     (100., 100.),
    /// ]).lines().collect();
    /// assert!(!lines.is_self_intersecting().unwrap());
    ///
    /// let lines: Vec<geo::Line<_>> = geo::LineString::from(vec![
    ///    (100., 100.),
    ///    (200., 100.),
    ///    (200., 200.),
    ///    (150., 50.),
    ///    (100., 200.),
    ///    (100., 100.),
    /// ]).lines().collect();
    /// assert!(lines.is_self_intersecting().unwrap());
    /// ```
    fn is_self_intersecting(&self) -> Result<bool, IntersectError> {
        // at around >25 line segments the sweep-line algorithm is faster
        if self.len() < 25 {
            // sanity check for each line
            for a_line in self.iter() {
                if !a_line.start.x.is_finite()
                    || !a_line.start.y.is_finite()
                    || !a_line.end.x.is_finite()
                    || !a_line.end.y.is_finite()
                {
                    return Err(IntersectError::InvalidData(
                        "Can't check for intersections on non-finite data".to_string(),
                    ));
                }
            }
            for l1 in self.iter().enumerate() {
                for l2 in self.iter().skip(l1.0 + 1) {
                    if ulps_eq_c(&l1.1.start, &l2.start)
                        || ulps_eq_c(&l1.1.start, &l2.end)
                        || ulps_eq_c(&l1.1.end, &l2.start)
                        || ulps_eq_c(&l1.1.end, &l2.end)
                    {
                        continue;
                    }
                    if l1.1.intersects(l2) {
                        return Ok(true);
                    }
                }
            }
            Ok(false)
        } else {
            Ok(algorithm::AlgorithmData::<T>::default()
                .with_ignore_end_point_intersections(true)?
                .with_stop_at_first_intersection(true)?
                .with_ref_lines(self.iter())?
                .compute()?
                .next()
                .is_some())
        }
    }

    /// Returns an iterator containing the found intersections.
    /// ```
    /// # use intersect2d::SelfIntersectingExclusive;
    /// # use intersect2d::ulps_eq_c;
    ///
    /// let lines : Vec<geo::Line<_>>= geo::LineString::from(vec![
    ///     (100., 100.),
    ///     (200., 100.),
    ///     (200., 200.),
    ///     (100., 200.),
    ///     (100., 100.),
    /// ]).lines().collect();
    ///
    /// let rv :Vec<(geo::Coordinate<_>,Vec<usize>)> =
    ///     lines.self_intersections().expect("err").collect();
    /// assert!(rv.is_empty());
    ///
    /// let lines : Vec<geo::Line<_>> = geo::LineString::from(vec![
    ///    (100., 100.),
    ///    (200., 100.),
    ///    (200., 200.),
    ///    (150., 50.),
    ///    (100., 200.),
    ///    (100., 100.),
    /// ]).lines().collect();
    /// let rv :Vec<(geo::Coordinate<_>,Vec<usize>)> =
    ///     lines.self_intersections().expect("err").collect();
    ///
    /// assert_eq!(rv.len(), 2);
    /// assert_eq!(rv[0].1, vec!(0_usize, 2));
    /// assert!(ulps_eq_c(&rv[0].0, &geo::Coordinate{x: 166.66666666666666, y: 100.0}));
    /// assert_eq!(rv[1].1, vec!(0_usize, 3));
    /// assert!(ulps_eq_c(&rv[1].0, &geo::Coordinate{x: 133.33333333333333, y: 100.0}));
    /// ```
    #[allow(clippy::type_complexity)]
    fn self_intersections<'a>(
        &self,
    ) -> Result<
        Box<dyn ExactSizeIterator<Item = (geo::Coordinate<T>, Vec<usize>)> + 'a>,
        IntersectError,
    >
    where
        T: 'a,
    {
        if self.len() < 25 {
            // at around <25 line segments the brute force test is faster

            // sanity check for each line
            for a_line in self.iter() {
                if !a_line.start.x.is_finite()
                    || !a_line.start.y.is_finite()
                    || !a_line.end.x.is_finite()
                    || !a_line.end.y.is_finite()
                {
                    return Err(IntersectError::InvalidData(
                        "Can't check for intersections on non-finite data".to_string(),
                    ));
                }
            }
            let mut rv = Vec::<(geo::Coordinate<T>, Vec<usize>)>::new();
            for l1 in self.iter().enumerate() {
                for l2 in self.iter().enumerate().skip(l1.0 + 1) {
                    if ulps_eq_c(&l1.1.start, &l2.1.start)
                        || ulps_eq_c(&l1.1.start, &l2.1.end)
                        || ulps_eq_c(&l1.1.end, &l2.1.start)
                        || ulps_eq_c(&l1.1.end, &l2.1.end)
                    {
                        continue;
                    }
                    if let Some(i) = intersect(l1.1, l2.1) {
                        rv.push((i.single(), vec![l1.0, l2.0]));
                    }
                }
            }
            // This will only return intersections between two lines at a single point
            // If more than that are intersecting it will be reported once for each pair.
            // Todo: fix it!
            Ok(Box::new(rv.into_iter()))
        } else {
            // at around >25 line segments the sweep-line algorithm is faster
            algorithm::AlgorithmData::<T>::default()
                .with_ignore_end_point_intersections(true)?
                .with_stop_at_first_intersection(false)?
                .with_ref_lines(self.iter())?
                .compute()
        }
    }
}

impl<T> SelfIntersectingExclusive<T> for geo::LineString<T>
where
    T: Float
        + num_traits::ToPrimitive
        + geo::GeoFloat
        + geo::CoordFloat
        + approx::AbsDiffEq
        + approx::UlpsEq,
    T::Epsilon: Copy,
{
    /// Returns true if the LineString is self intersecting.
    /// The 'ignore_end_point_intersections' parameter must always be set to true when testing
    /// LineStrings.
    /// ```
    /// # use intersect2d::SelfIntersectingExclusive;
    ///
    /// let line_string = geo::LineString::from(vec![
    ///     (100., 100.),
    ///     (200., 100.),
    ///     (200., 200.),
    ///     (100., 200.),
    ///     (100., 100.),
    /// ]);
    /// assert!(!line_string.is_self_intersecting().unwrap());
    ///
    /// let line_string = geo::LineString::from(vec![
    ///    (100., 100.),
    ///    (200., 100.),
    ///    (200., 200.),
    ///    (150., 50.),
    ///    (100., 200.),
    ///    (100., 100.),
    /// ]);
    /// assert!(line_string.is_self_intersecting().unwrap());
    /// ```
    fn is_self_intersecting(&self) -> Result<bool, IntersectError> {
        // at around >25 line segments the sweep-line algorithm is faster
        if self.0.len() < 25 {
            // sanity check for each line
            for point in self.points_iter() {
                if !point.x().is_finite() || !point.y().is_finite() {
                    return Err(IntersectError::InvalidData(
                        "Can't check for intersections on non-finite data".to_string(),
                    ));
                }
            }
            for l1 in self.lines().enumerate() {
                for l2 in self.lines().skip(l1.0 + 1) {
                    if ulps_eq_c(&l1.1.start, &l2.start)
                        || ulps_eq_c(&l1.1.start, &l2.end)
                        || ulps_eq_c(&l1.1.end, &l2.start)
                        || ulps_eq_c(&l1.1.end, &l2.end)
                    {
                        continue;
                    }
                    if l1.1.intersects(&l2) {
                        return Ok(true);
                    }
                }
            }
            Ok(false)
        } else {
            Ok(algorithm::AlgorithmData::<T>::default()
                .with_ignore_end_point_intersections(true)?
                .with_stop_at_first_intersection(true)?
                .with_lines(self.lines())?
                .compute()?
                .next()
                .is_some())
        }
    }

    /// Returns an iterator containing the found intersections.
    /// The 'ignore_end_point_intersections' parameter must always be set to true when testing
    /// LineStrings.
    /// ```
    /// # use intersect2d::SelfIntersectingExclusive;
    /// # use intersect2d::ulps_eq_c;
    ///
    /// let line_string = geo::LineString::from(vec![
    ///     (100., 100.),
    ///     (200., 100.),
    ///     (200., 200.),
    ///     (100., 200.),
    ///     (100., 100.),
    /// ]);
    /// let rv :Vec<(geo::Coordinate<_>,Vec<usize>)> =
    ///     line_string.self_intersections().expect("err").collect();
    /// assert!(rv.is_empty());
    ///
    /// let line_string = geo::LineString::from(vec![
    ///    (100., 100.),
    ///    (200., 100.),
    ///    (200., 200.),
    ///    (150., 50.),
    ///    (100., 200.),
    ///    (100., 100.),
    /// ]);
    /// let rv :Vec<(geo::Coordinate<_>,Vec<usize>)> =
    ///     line_string.self_intersections().expect("err").collect();
    ///
    /// assert_eq!(line_string.0.len(),6);
    /// assert_eq!(rv.len(), 2);
    /// assert_eq!(rv[0].1, vec!(0_usize,2));
    /// assert!(ulps_eq_c(&rv[0].0, &geo::Coordinate{x: 166.66666666666666, y: 100.0}));
    /// assert_eq!(rv[1].1, vec!(0_usize,3));
    /// assert!(ulps_eq_c(&rv[1].0, &geo::Coordinate{x: 133.33333333333334, y: 100.0}));
    /// ```
    #[allow(clippy::type_complexity)]
    fn self_intersections<'a>(
        &self,
    ) -> Result<
        Box<dyn ExactSizeIterator<Item = (geo::Coordinate<T>, Vec<usize>)> + 'a>,
        IntersectError,
    >
    where
        T: 'a,
    {
        if self.0.len() < 25 {
            // at around <25 line segments the brute force test is faster
            // sanity check for each line
            for point in self.points_iter() {
                if !point.x().is_finite() || !point.y().is_finite() {
                    return Err(IntersectError::InvalidData(
                        "Can't check for intersections on non-finite data".to_string(),
                    ));
                }
            }
            let mut rv = Vec::<(geo::Coordinate<T>, Vec<usize>)>::new();
            for l1 in self.lines().enumerate() {
                for l2 in self.lines().enumerate().skip(l1.0 + 1) {
                    if ulps_eq_c(&l1.1.start, &l2.1.start)
                        || ulps_eq_c(&l1.1.start, &l2.1.end)
                        || ulps_eq_c(&l1.1.end, &l2.1.start)
                        || ulps_eq_c(&l1.1.end, &l2.1.end)
                    {
                        continue;
                    }
                    if let Some(i) = intersect(&l1.1, &l2.1) {
                        rv.push((i.single(), vec![l1.0, l2.0]));
                    }
                }
            }
            // This will only return intersections between two lines at a single point
            // If more than that are intersecting it will be reported once for each pair.
            // Todo: fix it!
            Ok(Box::new(rv.into_iter()))
        } else {
            // at around >25 line segments the sweep-line algorithm is faster
            algorithm::AlgorithmData::<T>::default()
                .with_ignore_end_point_intersections(true)?
                .with_stop_at_first_intersection(false)?
                .with_lines(self.lines())?
                .compute()
        }
    }
}

/// returns true if the two coordinates are virtually identical
///
#[inline(always)]
pub fn ulps_eq_c<T>(a: &geo::Coordinate<T>, b: &geo::Coordinate<T>) -> bool
where
    T: Float + geo::CoordFloat + approx::AbsDiffEq + approx::UlpsEq,
    T::Epsilon: Copy,
{
    approx::ulps_eq!(&a.x, &b.x) && approx::ulps_eq!(&a.y, &b.y)
}

#[inline(always)]
#[allow(dead_code)]
#[deprecated(since = "0.3.2", note = "please use `approx::ulps_eq!` instead")]
pub fn ulps_eq<T>(a: &T, b: &T) -> bool
where
    T: Float + geo::CoordFloat + approx::AbsDiffEq + approx::UlpsEq,
    T::Epsilon: Copy,
{
    approx::ulps_eq!(a, b)
}