interprocess_docfix/os/windows/signal.rs
1//! C signal support on Windows.
2//!
3//! A big difference from POSIX platforms is the amount of signals that Windows supports. Signals on Windows are therefore much less useful than POSIX ones.
4//!
5//! # Signal safe C functions
6//! The C standard specifies that calling any functions *other than those ones* from a signal hook **results in undefined behavior**:
7//! - `abort`
8//! - `_Exit`
9//! - `quick_exit`
10//! - `signal`, but only if it is used for setting a handler for the same signal as the one being currently handled
11//! - atomic C functions, but only the ones which are lock-free (practically never used in Rust since it has its own atomics which use compiler intrinsics)
12//! - `atomic_is_lock_free`
13
14use super::imports::*;
15use std::{
16 convert::{TryFrom, TryInto},
17 error::Error,
18 fmt::{self, Formatter},
19 panic, process,
20};
21
22/// Installs the specified handler for the specified signal.
23///
24/// # Example
25/// ```no_run
26/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
27/// # #[cfg(all(windows, feature = "signals"))] {
28/// use interprocess::os::windows::signal::{self, SignalType, SignalHandler};
29///
30/// let handler = unsafe {
31/// // Since signal handlers are restricted to a specific set of C functions, creating a
32/// // handler from an arbitrary function is unsafe because it might call a function
33/// // outside the list, and there's no real way to know that at compile time with the
34/// // current version of Rust. Since we're only using the write() system call here, this
35/// // is safe.
36/// SignalHandler::from_fn(|| {
37/// println!("You pressed Ctrl-C!");
38/// })
39/// };
40///
41/// // Install our handler for the KeyboardInterrupt signal type.
42/// signal::set_handler(SignalType::KeyboardInterrupt, handler)?;
43/// # }
44/// # Ok(()) }
45/// ```
46pub fn set_handler(signal_type: SignalType, handler: SignalHandler) -> Result<(), SetHandlerError> {
47 if signal_type.is_unsafe() {
48 return Err(SetHandlerError::UnsafeSignal);
49 }
50
51 unsafe { set_unsafe_handler(signal_type, handler) }
52}
53/// Installs the specified handler for the specified unsafe signal.
54///
55/// # Safety
56/// The handler and all code that may or may not execute afterwards must be prepared for the aftermath of what might've caused the signal.
57///
58/// [`SegmentationFault`] or [`IllegalInstruction`] are most likely caused by undefined behavior invoked from Rust (the former is caused by dereferencing invalid memory, the latter is caused by dereferencing an incorrectly aligned pointer on ISAs like ARM which do not tolerate misaligned pointers), which means that the program is unsound and the only meaningful thing to do is to capture as much information as possible in a safe way – preferably using OS services to create a dump, rather than trying to read the program's global state, which might be irreversibly corrupted – and write the crash dump to some on-disk location.
59///
60/// # Example
61/// ```no_run
62/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
63/// # #[cfg(all(windows, feature = "signals"))] {
64/// use interprocess::os::windows::signal::{self, SignalType, SignalHandler};
65///
66/// let handler = unsafe {
67/// // Since signal handlers are restricted to a specific set of C functions, creating a
68/// // handler from an arbitrary function is unsafe because it might call a function
69/// // outside the list, and there's no real way to know that at compile time with the
70/// // current version of Rust. Since we're only using the write() system call here, this
71/// // is safe.
72/// SignalHandler::from_fn(|| {
73/// println!("Oh no, we're running on an i386!");
74/// std::process::abort();
75/// })
76/// };
77///
78/// unsafe {
79/// // Install our handler for the IllegalInstruction signal type.
80/// signal::set_unsafe_handler(SignalType::IllegalInstruction, handler)?;
81/// }
82/// # }
83/// # Ok(()) }
84/// ```
85///
86/// [`SegmentationFault`]: enum.SignalType.html#variant.SegmentationFault " "
87/// [`IllegalInstruction`]: enum.SignalType.html#variant.IllegalInstruction " "
88pub unsafe fn set_unsafe_handler(
89 signal_type: SignalType,
90 handler: SignalHandler,
91) -> Result<(), SetHandlerError> {
92 let signal_type = signal_type as u64;
93 let handlers = HANDLERS.read();
94 let new_signal = handlers.get(signal_type).is_none();
95 drop(handlers);
96 if new_signal {
97 let mut handlers = HANDLERS.write();
98 handlers.remove(signal_type);
99 handlers.insert(signal_type, handler);
100 drop(handlers);
101
102 let hook_val = match handler {
103 SignalHandler::Default => SIG_DFL,
104 _ => signal_receiver as usize,
105 };
106 unsafe {
107 // SAFETY: we're using a correct value for the hook
108 install_hook(signal_type as i32, hook_val)
109 .map_err(|_| SetHandlerError::UnexpectedLibcCallFailure)?
110 }
111 }
112 Ok(())
113}
114
115#[cfg(all(windows, feature = "signals"))]
116static HANDLERS: Lazy<RwLock<IntMap<SignalHandler>>> = Lazy::new(|| RwLock::new(IntMap::new()));
117
118unsafe fn install_hook(signum: i32, hook: usize) -> Result<(), ()> {
119 let success = unsafe {
120 // SAFETY: hook validity is required via safety contract
121 libc::signal(signum, hook)
122 } != libc::SIG_ERR as _;
123 if success {
124 Ok(())
125 } else {
126 Err(())
127 }
128}
129
130/// The actual hook which is passed to `sigaction` which dispatches signals according to the global handler map (the `HANDLERS` static).
131extern "C" fn signal_receiver(signum: i32) {
132 let catched = panic::catch_unwind(|| {
133 let handler = {
134 let handlers = HANDLERS.read();
135 let val = handlers
136 .get(signum as u64)
137 .expect("unregistered signal passed by the OS to the shared receiver");
138 *val
139 };
140 match handler {
141 SignalHandler::Ignore => {}
142 SignalHandler::Hook(hook) => hook.inner()(),
143 SignalHandler::NoReturnHook(hook) => hook.inner()(),
144 SignalHandler::Default => unreachable!(
145 "signal receiver was unregistered but has been called by the OS anyway"
146 ),
147 }
148 });
149 // The panic hook already ran, so we only have to abort the process
150 catched.unwrap_or_else(|_| process::abort());
151}
152
153/// The error produced when setting a signal handler fails.
154#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
155#[cfg_attr(all(windows, feature = "signals"), derive(Error))]
156pub enum SetHandlerError {
157 /// An unsafe signal was attempted to be handled using `set_handler` instead of `set_unsafe_handler`.
158 #[cfg_attr(
159 all(windows, feature = "signals"),
160 error(
161 "\
162an unsafe signal was attempted to be handled using `set_handler` instead of `set_unsafe_handler`"
163 )
164 )]
165 UnsafeSignal,
166 /// the C library call unexpectedly failed without error information.
167 #[cfg_attr(
168 all(windows, feature = "signals"),
169 error("the C library call unexpectedly failed without error information")
170 )]
171 UnexpectedLibcCallFailure,
172}
173
174/// A signal handling method.
175#[derive(Copy, Clone, Debug, PartialEq, Eq)]
176pub enum SignalHandler {
177 /// Use the default behavior specified by the C standard.
178 Default,
179 /// Ignore the signal whenever it is received.
180 Ignore,
181 /// Call a function whenever the signal is received. The function can return, execution will continue.
182 Hook(SignalHook),
183 /// Call a function whenever the signal is received. The function must not return.
184 NoReturnHook(NoReturnSignalHook),
185}
186impl SignalHandler {
187 /// Returns `true` for the [`Default`] variant, `false` otherwise.
188 ///
189 /// [`Default`]: #variant.Default.html " "
190 pub const fn is_default(self) -> bool {
191 matches!(self, Self::Default)
192 }
193 /// Returns `true` for the [`Ignore`] variant, `false` otherwise.
194 ///
195 /// [`Ignore`]: #variant.Ignore.html " "
196 pub const fn is_ignore(self) -> bool {
197 matches!(self, Self::Ignore)
198 }
199 /// Returns `true` for the [`Hook`] and [`NoReturnHook`] variants, `false` otherwise.
200 ///
201 /// [`Hook`]: #variant.Hook.html " "
202 /// [`NoReturnHook`]: #variant.NoReturnHook.html " "
203 pub const fn is_hook(self) -> bool {
204 matches!(self, Self::Hook(..))
205 }
206 /// Creates a handler which calls the specified function.
207 ///
208 /// # Safety
209 /// The function must not call any C functions which are not considered signal-safe. See the [module-level section on signal-safe C functions] for more.
210 ///
211 /// [module-level section on signal-safe C functions]: index.html#signal-safe-c-functions " "
212 pub unsafe fn from_fn(function: fn()) -> Self {
213 let hook = unsafe {
214 // SAFETY: hook validity required by safety contract
215 SignalHook::from_fn(function)
216 };
217 Self::Hook(hook)
218 }
219 /// Creates a handler which calls the specified function and is known to never return.
220 ///
221 /// # Safety
222 /// The function must not call any C functions which are not considered signal-safe. See the [module-level section on signal-safe C functions] for more.
223 ///
224 /// [module-level section on signal-safe C functions]: index.html#signal-safe-c-functions " "
225 pub unsafe fn from_fn_noreturn(function: fn() -> !) -> Self {
226 let hook = unsafe {
227 // SAFETY: hook validity required by safety contract
228 NoReturnSignalHook::from_fn(function)
229 };
230 Self::NoReturnHook(hook)
231 }
232}
233impl Default for SignalHandler {
234 /// Returns [`SignalHandler::Default`].
235 ///
236 /// [`SignalHandler::Default`]: #variant.Default " "
237 fn default() -> Self {
238 Self::Default
239 }
240}
241
242/// A function which can be used as a signal handler.
243#[repr(transparent)]
244#[derive(Copy, Clone, Debug, PartialEq, Eq)]
245pub struct SignalHook(fn());
246impl SignalHook {
247 /// Creates a hook which calls the specified function.
248 ///
249 /// # Safety
250 /// The function must not call any C functions which are not considered signal-safe. See the [module-level section on signal-safe functions] for more.
251 ///
252 /// [module-level section on signal-safe functions]: index.html#signal-safe-functions " "
253 pub unsafe fn from_fn(function: fn()) -> Self {
254 Self(function)
255 }
256 /// Returns the wrapped function.
257 pub fn inner(self) -> fn() {
258 self.0
259 }
260}
261impl From<SignalHook> for fn() {
262 fn from(op: SignalHook) -> Self {
263 op.0
264 }
265}
266
267/// A function which can be used as a signal handler, but one which also never returns.
268#[repr(transparent)]
269#[derive(Copy, Clone, Debug, PartialEq, Eq)]
270pub struct NoReturnSignalHook(fn() -> !);
271impl NoReturnSignalHook {
272 /// Creates a hook which calls the specified function.
273 ///
274 /// # Safety
275 /// Same as for the normal [`SignalHook`].
276 ///
277 /// [`SignalHook`]: struct.SignalHook.html " "
278 pub unsafe fn from_fn(function: fn() -> !) -> Self {
279 Self(function)
280 }
281 /// Returns the wrapped function.
282 pub fn inner(self) -> fn() -> ! {
283 self.0
284 }
285}
286impl From<NoReturnSignalHook> for fn() -> ! {
287 fn from(op: NoReturnSignalHook) -> Self {
288 op.0
289 }
290}
291
292/// All standard signal types as defined in the C standard.
293///
294/// The values can be safely and quickly converted to [`i32`]/[`u32`]. The reverse process involves safety checks, making sure that unknown signal values are never stored.
295///
296/// [`i32`]: https://doc.rust-lang.org/std/primitive.i32.html " "
297/// [`u32`]: https://doc.rust-lang.org/std/primitive.u32.html " "
298#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
299#[repr(i32)]
300#[non_exhaustive]
301pub enum SignalType {
302 /// `SIGINT` – keyboard interrupt, usually sent by pressing `Ctrl`+`C` by the terminal. This signal is typically set to be ignored if the program runs an interactive interface: GUI/TUI, interactive shell (the Python shell, for example) or any other kind of interface which runs in a loop, as opposed to a command-line invocation of the program which reads its standard input or command-line arguments, performs a task and exits. If the interactive interface is running a lengthy operation, a good idea is to temporarily re-enable the signal and abort the lengthy operation if the signal is received, then disable it again.
303 ///
304 /// *Default handler: process termination.*
305 KeyboardInterrupt = SIGINT,
306 /// `SIGILL` – illegal or malformed instruction exception, generated by the CPU whenever such an instruction is executed. This signal normally should not be overriden or masked out, since it likely means that the executable file or the memory of the process has been corrupted and further execution is a risk of invoking negative consequences.
307 ///
308 /// For reasons described above, **this signal is considered unsafe** – handling it requires using `set_unsafe_handler`. **Signal hooks for this signal are also required to never return** – those must be wrapped into a `NoReturnSignalHook`.
309 ///
310 /// *Default handler: process termination with a core dump.*
311 IllegalInstruction = SIGILL,
312 /// `SIGABRT` – abnormal termination requested. This signal is typically invoked by the program itself, using [`std::process::abort`] or the equivalent C function; still, like any other signal, it can be sent from outside the process.
313 ///
314 /// *Default handler: process termination with a core dump.*
315 ///
316 /// [`std::process::abort`]: https://doc.rust-lang.org/std/process/fn.abort.html " "
317 Abort = SIGABRT,
318 /// `SIGFPE` – mathematical exception. This signal is generated whenever an undefined mathematical operation is performed – mainly integer division by zero.
319 ///
320 /// **Signal hooks for this signal are required to never return** – those must be wrapped into a `NoReturnSignalHook`.
321 ///
322 /// *Default handler: process termination with a core dump.*
323 MathException = SIGFPE,
324 /// `SIGSEGV` – invaid memory access. This signal is issued by the OS whenever the program tries to access an invalid memory location, such as the `NULL` pointer or simply an address outside the user-mode address space as established by the OS. The only case when this signal can be received by a Rust program is if memory unsafety occurs due to misuse of unsafe code. As such, it should normally not be masked out or handled, as it likely indicates a critical bug (soundness hole), executable file corruption or process memory corruption.
325 ///
326 /// For reasons described above, **this signal is considered unsafe** – handling it requires using `set_unsafe_handler`. **Signal hooks for this signal are also required to never return** – those must be wrapped into a `NoReturnSignalHook`.
327 ///
328 /// *Default handler: process termination with a core dump.*
329 SegmentationFault = SIGSEGV,
330 /// `SIGTERM` – request for termination. This signal can only be sent using the usual signal sending procedures. Unlike [`KeyboardInterrupt`], this signal is not a request to break out of a lengthy operation, but rather to close the program as a whole. Signal handlers for this signal are expected to perform minimal cleanup and quick state save procedures and then exit.
331 ///
332 /// *Default handler: process termination.*
333 ///
334 /// [`KeyboardInterrupt`]: #variant.KeyboardInterrupt " "
335 Termination = SIGTERM,
336}
337impl SignalType {
338 /// Returns `true` if the value is a signal which requires its custom handler functions to never return, `false` otherwise.
339 pub const fn requires_diverging_hook(self) -> bool {
340 matches!(
341 self,
342 Self::SegmentationFault | Self::IllegalInstruction | Self::MathException
343 )
344 }
345 /// Returns `true` if the value is an unsafe signal which requires unsafe code when setting a handling method, `false` otherwise.
346 pub const fn is_unsafe(self) -> bool {
347 matches!(self, Self::SegmentationFault | Self::IllegalInstruction)
348 }
349}
350impl From<SignalType> for i32 {
351 fn from(op: SignalType) -> Self {
352 op as i32
353 }
354}
355impl From<SignalType> for u32 {
356 fn from(op: SignalType) -> Self {
357 op as u32
358 }
359}
360impl TryFrom<i32> for SignalType {
361 type Error = UnknownSignalError;
362 fn try_from(value: i32) -> Result<Self, Self::Error> {
363 match value {
364 SIGINT => Ok(Self::KeyboardInterrupt),
365 SIGILL => Ok(Self::IllegalInstruction),
366 SIGABRT => Ok(Self::Abort),
367 SIGFPE => Ok(Self::MathException),
368 SIGSEGV => Ok(Self::SegmentationFault),
369 SIGTERM => Ok(Self::Termination),
370 _ => Err(UnknownSignalError { value }),
371 }
372 }
373}
374impl TryFrom<u32> for SignalType {
375 type Error = UnknownSignalError;
376 fn try_from(value: u32) -> Result<Self, Self::Error> {
377 value.try_into()
378 }
379}
380/// Error type returned when a conversion from [`i32`]/[`u32`] to [`SignalType`] fails.
381///
382/// [`i32`]: https://doc.rust-lang.org/std/primitive.i32.html " "
383/// [`u32`]: https://doc.rust-lang.org/std/primitive.u32.html " "
384/// [`SignalType`]: enum.SignalType.html " "
385#[derive(Copy, Clone, Debug, PartialEq, Eq)]
386pub struct UnknownSignalError {
387 /// The unknown signal value which was encountered.
388 pub value: i32,
389}
390impl fmt::Display for UnknownSignalError {
391 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
392 write!(f, "unknown signal value {}", self.value)
393 }
394}
395impl fmt::Binary for UnknownSignalError {
396 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
397 write!(f, "unknown signal value {:b}", self.value)
398 }
399}
400impl fmt::LowerHex for UnknownSignalError {
401 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
402 write!(f, "unknown signal value {:x}", self.value)
403 }
404}
405impl fmt::UpperExp for UnknownSignalError {
406 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
407 write!(f, "unknown signal value {:X}", self.value)
408 }
409}
410impl fmt::Octal for UnknownSignalError {
411 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
412 write!(f, "unknown signal value {:o}", self.value)
413 }
414}
415impl Error for UnknownSignalError {}