1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
use std::cmp::{max, Ordering, Reverse};
use std::collections::BinaryHeap;
use std::collections::HashSet;
#[cfg(feature = "indicatif")]
use std::sync::atomic::{self, AtomicUsize};

#[cfg(feature = "indicatif")]
use indicatif::ProgressBar;
use ordered_float::OrderedFloat;
use parking_lot::{Mutex, RwLock};
use rand::rngs::SmallRng;
use rand::{Rng, SeedableRng};
use rayon::iter::{IndexedParallelIterator, IntoParallelIterator, ParallelIterator};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

mod types;
pub use types::PointId;
use types::{Candidate, Layer, LayerId, UpperNode, Visited, ZeroNode, INVALID};

#[derive(Clone)]
/// Parameters for building the `Hnsw`
pub struct Builder {
    ef_search: usize,
    ef_construction: usize,
    heuristic: Option<Heuristic>,
    ml: f32,
    seed: u64,
    #[cfg(feature = "indicatif")]
    progress: Option<ProgressBar>,
}

impl Builder {
    /// Set the `efConstruction` parameter from the paper
    pub fn ef_construction(mut self, ef_construction: usize) -> Self {
        self.ef_construction = ef_construction;
        self
    }

    /// Set the `ef` parameter from the paper
    ///
    /// If the `efConstruction` parameter is not already set, it will be set
    /// to the same value as `ef` by default.
    pub fn ef_search(mut self, ef: usize) -> Self {
        self.ef_search = ef;
        self
    }

    pub fn select_heuristic(mut self, params: Option<Heuristic>) -> Self {
        self.heuristic = params;
        self
    }

    /// Set the `mL` parameter from the paper
    ///
    /// If the `mL` parameter is not already set, it defaults to `1.0 / ln(M)`.
    pub fn ml(mut self, ml: f32) -> Self {
        self.ml = ml;
        self
    }

    /// Set the seed value for the random number generator used to generate a layer for each point
    ///
    /// If this value is left unset, a seed is generated from entropy (via `getrandom()`).
    pub fn seed(mut self, seed: u64) -> Self {
        self.seed = seed;
        self
    }

    /// A `ProgressBar` to track `Hnsw` construction progress
    #[cfg(feature = "indicatif")]
    pub fn progress(mut self, bar: ProgressBar) -> Self {
        self.progress = Some(bar);
        self
    }

    /// Build an `HnswMap` with the given sets of points and values
    pub fn build<P: Point, V: Clone>(self, points: Vec<P>, values: Vec<V>) -> HnswMap<P, V> {
        HnswMap::new(points, values, self)
    }

    /// Build the `Hnsw` with the given set of points
    pub fn build_hnsw<P: Point>(self, points: Vec<P>) -> (Hnsw<P>, Vec<PointId>) {
        Hnsw::new(points, self)
    }

    #[doc(hidden)]
    pub fn into_parts(self) -> (usize, usize, f32, u64) {
        let Self {
            ef_search,
            ef_construction,
            heuristic: _,
            ml,
            seed,
            ..
        } = self;
        (ef_search, ef_construction, ml, seed)
    }
}

impl Default for Builder {
    fn default() -> Self {
        Self {
            ef_search: 100,
            ef_construction: 100,
            heuristic: Some(Heuristic::default()),
            ml: 1.0 / (M as f32).ln(),
            seed: rand::random(),
            #[cfg(feature = "indicatif")]
            progress: None,
        }
    }
}

#[derive(Copy, Clone, Debug)]
pub struct Heuristic {
    pub extend_candidates: bool,
    pub keep_pruned: bool,
}

impl Default for Heuristic {
    fn default() -> Self {
        Heuristic {
            extend_candidates: false,
            keep_pruned: true,
        }
    }
}

#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
pub struct HnswMap<P, V> {
    hnsw: Hnsw<P>,
    pub values: Vec<V>,
}

impl<P, V> HnswMap<P, V>
where
    P: Point,
    V: Clone,
{
    fn new(points: Vec<P>, values: Vec<V>, builder: Builder) -> Self {
        let (hnsw, ids) = Hnsw::new(points, builder);

        let mut sorted = ids.into_iter().enumerate().collect::<Vec<_>>();
        sorted.sort_unstable_by(|a, b| a.1.cmp(&b.1));
        let new = sorted
            .into_iter()
            .map(|(src, _)| values[src].clone())
            .collect();

        Self { hnsw, values: new }
    }

    pub fn search<'a>(
        &'a self,
        point: &P,
        search: &'a mut Search,
    ) -> impl Iterator<Item = MapItem<'a, P, V>> + ExactSizeIterator + 'a {
        self.hnsw
            .search(point, search)
            .map(move |item| MapItem::from(item, self))
    }

    /// Iterate over the keys and values in this index
    pub fn iter(&self) -> impl Iterator<Item = (PointId, &P)> {
        self.hnsw.iter()
    }

    #[doc(hidden)]
    pub fn get(&self, i: usize, search: &Search) -> Option<MapItem<'_, P, V>> {
        Some(MapItem::from(self.hnsw.get(i, search)?, self))
    }
}

pub struct MapItem<'a, P, V> {
    pub distance: f32,
    pub pid: PointId,
    pub point: &'a P,
    pub value: &'a V,
}

impl<'a, P, V> MapItem<'a, P, V> {
    fn from(item: Item<'a, P>, map: &'a HnswMap<P, V>) -> Self {
        MapItem {
            distance: item.distance,
            pid: item.pid,
            point: item.point,
            value: &map.values[item.pid.0 as usize],
        }
    }
}

#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
pub struct Hnsw<P> {
    ef_search: usize,
    points: Vec<P>,
    zero: Vec<ZeroNode>,
    layers: Vec<Vec<UpperNode>>,
}

impl<P> Hnsw<P>
where
    P: Point,
{
    pub fn builder() -> Builder {
        Builder::default()
    }

    fn new(points: Vec<P>, builder: Builder) -> (Self, Vec<PointId>) {
        let ef_search = builder.ef_search;
        let ef_construction = builder.ef_construction;
        let ml = builder.ml;
        let heuristic = builder.heuristic;
        let mut rng = SmallRng::seed_from_u64(builder.seed);

        #[cfg(feature = "indicatif")]
        let progress = builder.progress;
        #[cfg(feature = "indicatif")]
        if let Some(bar) = &progress {
            bar.set_length(points.len() as u64);
            bar.set_message("Build index (preparation)");
        }

        if points.is_empty() {
            return (
                Self {
                    ef_search,
                    zero: Vec::new(),
                    points: Vec::new(),
                    layers: Vec::new(),
                },
                Vec::new(),
            );
        }

        // Determine the number and size of layers.

        let mut sizes = Vec::new();
        let mut num = points.len();
        loop {
            let next = (num as f32 * ml) as usize;
            if next < M {
                break;
            }
            sizes.push((num - next, num));
            num = next;
        }
        sizes.push((num, num));
        sizes.reverse();
        let top = LayerId(sizes.len() - 1);

        // Give all points a random layer and sort the list of nodes by descending order for
        // construction. This allows us to copy higher layers to lower layers as construction
        // progresses, while preserving randomness in each point's layer and insertion order.

        assert!(points.len() < u32::MAX as usize);
        let mut shuffled = (0..points.len())
            .map(|i| (PointId(rng.gen_range(0..points.len() as u32)), i))
            .collect::<Vec<_>>();
        shuffled.sort_unstable();

        let mut out = vec![INVALID; points.len()];
        let points = shuffled
            .into_iter()
            .enumerate()
            .map(|(i, (_, idx))| {
                out[idx] = PointId(i as u32);
                points[idx].clone()
            })
            .collect::<Vec<_>>();

        // Figure out how many nodes will go on each layer. This helps us allocate memory capacity
        // for each layer in advance, and also helps enable batch insertion of points.

        let num_layers = sizes.len();
        let mut ranges = Vec::with_capacity(top.0);
        for (i, (size, cumulative)) in sizes.into_iter().enumerate() {
            let start = cumulative - size;
            // Skip the first point, since we insert the enter point separately
            ranges.push((LayerId(num_layers - i - 1), max(start, 1)..cumulative));
        }

        // Initialize data for layers

        let mut layers = vec![vec![]; top.0];
        let zero = points
            .iter()
            .map(|_| RwLock::new(ZeroNode::default()))
            .collect::<Vec<_>>();

        let state = Construction {
            zero: zero.as_slice(),
            pool: SearchPool::new(points.len()),
            top,
            points: &points,
            heuristic,
            ef_construction,
            #[cfg(feature = "indicatif")]
            progress,
            #[cfg(feature = "indicatif")]
            done: AtomicUsize::new(0),
        };

        for (layer, range) in ranges {
            #[cfg(feature = "indicatif")]
            if let Some(bar) = &state.progress {
                bar.set_message(format!("Building index (layer {})", layer.0));
            }

            let inserter = |pid| state.insert(pid, layer, &layers);

            let end = range.end;
            if layer == top {
                range.into_iter().for_each(|i| inserter(PointId(i as u32)))
            } else {
                range
                    .into_par_iter()
                    .for_each(|i| inserter(PointId(i as u32)));
            }

            // For layers above the zero layer, make a copy of the current state of the zero layer
            // with `nearest` truncated to `M` elements.
            if !layer.is_zero() {
                (&state.zero[..end])
                    .into_par_iter()
                    .map(|zero| UpperNode::from_zero(&zero.read()))
                    .collect_into_vec(&mut layers[layer.0 - 1]);
            }
        }

        #[cfg(feature = "indicatif")]
        if let Some(bar) = &state.progress {
            bar.finish();
        }

        (
            Self {
                ef_search,
                zero: zero.into_iter().map(|node| node.into_inner()).collect(),
                points,
                layers,
            },
            out,
        )
    }

    /// Search the index for the points nearest to the reference point `point`
    ///
    /// The results are returned in the `out` parameter; the number of neighbors to search for
    /// is limited by the size of the `out` parameter, and the number of results found is returned
    /// in the return value.
    pub fn search<'a, 'b: 'a>(
        &'b self,
        point: &P,
        search: &'a mut Search,
    ) -> impl Iterator<Item = Item<'b, P>> + ExactSizeIterator + 'a {
        search.reset();
        let map = move |candidate| Item::new(candidate, self);
        if self.points.is_empty() {
            return search.iter().map(map);
        }

        search.visited.reserve_capacity(self.points.len());
        search.push(PointId(0), point, &self.points);
        for cur in LayerId(self.layers.len()).descend() {
            let (ef, num) = match cur.is_zero() {
                true => (self.ef_search, M * 2),
                false => (1, M),
            };

            search.ef = ef;
            match cur.0 {
                0 => search.search(point, self.zero.as_slice(), &self.points, num),
                l => search.search(point, self.layers[l - 1].as_slice(), &self.points, num),
            }

            if !cur.is_zero() {
                search.cull();
            }
        }

        search.iter().map(map)
    }

    /// Iterate over the keys and values in this index
    pub fn iter(&self) -> impl Iterator<Item = (PointId, &P)> {
        self.points
            .iter()
            .enumerate()
            .map(|(i, p)| (PointId(i as u32), p))
    }

    #[doc(hidden)]
    pub fn get(&self, i: usize, search: &Search) -> Option<Item<'_, P>> {
        Some(Item::new(search.nearest.get(i).copied()?, self))
    }
}

pub struct Item<'a, P> {
    pub distance: f32,
    pub pid: PointId,
    pub point: &'a P,
}

impl<'a, P> Item<'a, P> {
    fn new(candidate: Candidate, hnsw: &'a Hnsw<P>) -> Self {
        Self {
            distance: candidate.distance.into_inner(),
            pid: candidate.pid,
            point: &hnsw[candidate.pid],
        }
    }
}

struct Construction<'a, P: Point> {
    zero: &'a [RwLock<ZeroNode>],
    pool: SearchPool,
    top: LayerId,
    points: &'a [P],
    heuristic: Option<Heuristic>,
    ef_construction: usize,
    #[cfg(feature = "indicatif")]
    progress: Option<ProgressBar>,
    #[cfg(feature = "indicatif")]
    done: AtomicUsize,
}

impl<'a, P: Point> Construction<'a, P> {
    /// Insert new node in the zero layer
    ///
    /// * `new` is the `PointId` for the new node
    /// * `layer` contains all the nodes at the current layer
    /// * `layers` refers to the existing higher-level layers
    ///
    /// Creates the new node, initializing its `nearest` array and updates the nearest neighbors
    /// for the new node's neighbors if necessary before appending the new node to the layer.
    fn insert(&self, new: PointId, layer: LayerId, layers: &[Vec<UpperNode>]) {
        let mut node = self.zero[new].write();
        let (mut search, mut insertion) = self.pool.pop();
        insertion.ef = self.ef_construction;

        let point = &self.points[new];
        search.reset();
        search.push(PointId(0), point, self.points);
        let num = if layer.is_zero() { M * 2 } else { M };

        for cur in self.top.descend() {
            search.ef = if cur <= layer {
                self.ef_construction
            } else {
                1
            };
            match cur > layer {
                true => {
                    search.search(point, layers[cur.0 - 1].as_slice(), self.points, num);
                    search.cull();
                }
                false => {
                    search.search(point, self.zero, self.points, num);
                    break;
                }
            }
        }

        let found = match self.heuristic {
            None => {
                let candidates = search.select_simple();
                &candidates[..Ord::min(candidates.len(), M * 2)]
            }
            Some(heuristic) => {
                search.select_heuristic(&self.points[new], self.zero, self.points, heuristic)
            }
        };

        // Just make sure the candidates are all unique
        debug_assert_eq!(
            found.len(),
            found.iter().map(|c| c.pid).collect::<HashSet<_>>().len()
        );

        for (i, candidate) in found.iter().enumerate() {
            // `candidate` here is the new node's neighbor
            let &Candidate { distance, pid } = candidate;
            if let Some(heuristic) = self.heuristic {
                let found = insertion.add_neighbor_heuristic(
                    new,
                    self.zero.nearest_iter(pid),
                    self.zero,
                    &self.points[pid],
                    self.points,
                    heuristic,
                );

                self.zero[pid]
                    .write()
                    .rewrite(found.iter().map(|candidate| candidate.pid));
            } else {
                // Find the correct index to insert at to keep the neighbor's neighbors sorted
                let old = &self.points[pid];
                let idx = self.zero[pid]
                    .read()
                    .binary_search_by(|third| {
                        // `third` here is one of the neighbors of the new node's neighbor.
                        let third = match third {
                            pid if pid.is_valid() => *pid,
                            // if `third` is `None`, our new `node` is always "closer"
                            _ => return Ordering::Greater,
                        };

                        distance.cmp(&old.distance(&self.points[third]).into())
                    })
                    .unwrap_or_else(|e| e);

                self.zero[pid].write().insert(idx, new);
            }
            node.set(i, pid);
        }

        #[cfg(feature = "indicatif")]
        if let Some(bar) = &self.progress {
            let value = self.done.fetch_add(1, atomic::Ordering::Relaxed);
            if value % 1000 == 0 {
                bar.set_position(value as u64);
            }
        }

        self.pool.push((search, insertion));
    }
}

struct SearchPool {
    pool: Mutex<Vec<(Search, Search)>>,
    len: usize,
}

impl SearchPool {
    fn new(len: usize) -> Self {
        Self {
            pool: Mutex::new(Vec::new()),
            len,
        }
    }

    fn pop(&self) -> (Search, Search) {
        match self.pool.lock().pop() {
            Some(res) => res,
            None => (Search::new(self.len), Search::new(self.len)),
        }
    }

    fn push(&self, item: (Search, Search)) {
        self.pool.lock().push(item);
    }
}

/// Keeps mutable state for searching a point's nearest neighbors
///
/// In particular, this contains most of the state used in algorithm 2. The structure is
/// initialized by using `push()` to add the initial enter points.
pub struct Search {
    /// Nodes visited so far (`v` in the paper)
    visited: Visited,
    /// Candidates for further inspection (`C` in the paper)
    candidates: BinaryHeap<Reverse<Candidate>>,
    /// Nearest neighbors found so far (`W` in the paper)
    ///
    /// This must always be in sorted (nearest first) order.
    nearest: Vec<Candidate>,
    /// Working set for heuristic selection
    working: Vec<Candidate>,
    discarded: Vec<Candidate>,
    /// Maximum number of nearest neighbors to retain (`ef` in the paper)
    ef: usize,
}

impl Search {
    fn new(capacity: usize) -> Self {
        Self {
            visited: Visited::with_capacity(capacity),
            ..Default::default()
        }
    }

    /// Search the given layer for nodes near the given `point`
    ///
    /// This contains the loops from the paper's algorithm 2. `point` represents `q`, the query
    /// element; `search.candidates` contains the enter points `ep`. `points` contains all the
    /// points, which is required to calculate distances between two points.
    ///
    /// The `links` argument represents the number of links from each candidate to consider. This
    /// function may be called for a higher layer (with M links per node) or the zero layer (with
    /// M * 2 links per node), but for performance reasons we often call this function on the data
    /// representation matching the zero layer even when we're referring to a higher layer. In that
    /// case, we use `links` to constrain the number of per-candidate links we consider for search.
    ///
    /// Invariants: `self.nearest` should be in sorted (nearest first) order, and should be
    /// truncated to `self.ef`.
    fn search<L: Layer, P: Point>(&mut self, point: &P, layer: L, points: &[P], links: usize) {
        while let Some(Reverse(candidate)) = self.candidates.pop() {
            if let Some(furthest) = self.nearest.last() {
                if candidate.distance > furthest.distance {
                    break;
                }
            }

            for pid in layer.nearest_iter(candidate.pid).take(links) {
                self.push(pid, point, points);
            }

            // If we don't truncate here, `furthest` will be further out than necessary, making
            // us continue looping while we could have broken out.
            self.nearest.truncate(self.ef);
        }
    }

    fn add_neighbor_heuristic<L: Layer, P: Point>(
        &mut self,
        new: PointId,
        current: impl Iterator<Item = PointId>,
        layer: L,
        point: &P,
        points: &[P],
        params: Heuristic,
    ) -> &[Candidate] {
        self.reset();
        self.push(new, point, points);
        for pid in current {
            self.push(pid, point, points);
        }
        self.select_heuristic(point, layer, points, params)
    }

    /// Heuristically sort and truncate neighbors in `self.nearest`
    ///
    /// Invariant: `self.nearest` must be in sorted (nearest first) order.
    fn select_heuristic<L: Layer, P: Point>(
        &mut self,
        point: &P,
        layer: L,
        points: &[P],
        params: Heuristic,
    ) -> &[Candidate] {
        self.working.clear();
        // Get input candidates from `self.nearest` and store them in `self.working`.
        // `self.candidates` will represent `W` from the paper's algorithm 4 for now.
        for &candidate in &self.nearest {
            self.working.push(candidate);
            if params.extend_candidates {
                for hop in layer.nearest_iter(candidate.pid) {
                    if !self.visited.insert(hop) {
                        continue;
                    }

                    let other = &points[hop];
                    let distance = OrderedFloat::from(point.distance(other));
                    let new = Candidate { distance, pid: hop };
                    self.working.push(new);
                }
            }
        }

        if params.extend_candidates {
            self.working.sort_unstable();
        }

        self.nearest.clear();
        self.discarded.clear();
        for candidate in self.working.drain(..) {
            if self.nearest.len() >= M * 2 {
                break;
            }

            // Disadvantage candidates which are closer to an existing result point than they
            // are to the query point, to facilitate bridging between clustered points.
            let candidate_point = &points[candidate.pid];
            let nearest = !self.nearest.iter().any(|result| {
                let distance = OrderedFloat::from(candidate_point.distance(&points[result.pid]));
                distance < candidate.distance
            });

            match nearest {
                true => self.nearest.push(candidate),
                false => self.discarded.push(candidate),
            }
        }

        if params.keep_pruned {
            // Add discarded connections from `working` (`Wd`) to `self.nearest` (`R`)
            for candidate in self.discarded.drain(..) {
                if self.nearest.len() >= M * 2 {
                    break;
                }
                self.nearest.push(candidate);
            }
        }

        &self.nearest
    }

    /// Track node `pid` as a potential new neighbor for the given `point`
    ///
    /// Will immediately return if the node has been considered before. This implements
    /// the inner loop from the paper's algorithm 2.
    fn push<P: Point>(&mut self, pid: PointId, point: &P, points: &[P]) {
        if !self.visited.insert(pid) {
            return;
        }

        let other = &points[pid];
        let distance = OrderedFloat::from(point.distance(other));
        let new = Candidate { distance, pid };
        let idx = match self.nearest.binary_search(&new) {
            Err(idx) if idx < self.ef => idx,
            Err(_) => return,
            Ok(_) => unreachable!(),
        };

        self.nearest.insert(idx, new);
        self.candidates.push(Reverse(new));
    }

    /// Lower the search to the next lower level
    ///
    /// Re-initialize the `Search`: `nearest`, the output `W` from the last round, now becomes
    /// the set of enter points, which we use to initialize both `candidates` and `visited`.
    ///
    /// Invariant: `nearest` should be sorted and truncated before this is called. This is generally
    /// the case because `Layer::search()` is always called right before calling `cull()`.
    fn cull(&mut self) {
        self.candidates.clear();
        for &candidate in self.nearest.iter() {
            self.candidates.push(Reverse(candidate));
        }

        self.visited.clear();
        self.visited.extend(self.nearest.iter().map(|c| c.pid));
    }

    /// Resets the state to be ready for a new search
    fn reset(&mut self) {
        let Search {
            visited,
            candidates,
            nearest,
            working,
            discarded,
            ef: _,
        } = self;

        visited.clear();
        candidates.clear();
        nearest.clear();
        working.clear();
        discarded.clear();
    }

    /// Selection of neighbors for insertion (algorithm 3 from the paper)
    fn select_simple(&mut self) -> &[Candidate] {
        &self.nearest
    }

    fn iter(&self) -> impl Iterator<Item = Candidate> + ExactSizeIterator + '_ {
        self.nearest.iter().copied()
    }
}

impl Default for Search {
    fn default() -> Self {
        Self {
            visited: Visited::with_capacity(0),
            candidates: BinaryHeap::new(),
            nearest: Vec::new(),
            working: Vec::new(),
            discarded: Vec::new(),
            ef: 1,
        }
    }
}

pub trait Point: Clone + Sync {
    fn distance(&self, other: &Self) -> f32;
}

/// The parameter `M` from the paper
///
/// This should become a generic argument to `Hnsw` when possible.
const M: usize = 32;