1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
use super::{AEADReader, BlockBuffer, PoolRef, Reader, Writer};
use crate::{chunks::ChunkPointer, ObjectId};
use std::io::{self, Read, Write};

/// Smaller chunks will lower the storage overhead, achieving lowerhead.
/// This seems like a sensible tradeoff, but may change in the future.
const CHUNK_SIZE: usize = 500 * 1024;

/// A descriptor that contains necessary data to deserialize a stream.
#[derive(Serialize, Deserialize, Default, Debug, Clone)]
pub struct Stream(Vec<ChunkPointer>);
pub type DeserializeStream =
    crate::Deserializer<rmp_serde::decode::ReadReader<BufferedStream<PoolRef<AEADReader>>>>;

impl Stream {
    /// Open a reader that implements [`std::io::Read`].
    ///
    /// Note that you can't [`std::io::Seek`] in this stream at this
    /// point efficiently. If that is your use case, I recommend
    /// implementing another layer of indirection, and storing
    /// `Stream` e.g. in a [`VersionedMap<K,
    /// Stream>`][crate::fields::VersionedMap]
    pub fn open_reader<R: Reader, M: AsMut<R>>(&self, reader: M) -> BufferedStream<M> {
        self.open_with_buffer(reader, BlockBuffer::default())
    }

    /// Open a reader that implements [`std::io::Read`] with buffer.
    ///
    /// See [`Stream::open_reader`] for details
    pub fn open_with_buffer<R: Reader, M: AsMut<R>>(
        &self,
        reader: M,
        buffer: BlockBuffer,
    ) -> BufferedStream<M> {
        BufferedStream {
            reader,
            chunks: self.0.iter().rev().cloned().collect(),
            pos: None,
            len: None,
            buffer,
        }
    }

    /// Returns true if the stream has data in it.
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// List of objects that the Stream spans.
    ///
    /// Note these may not _exclusively_ contain this particular
    /// stream, or even just streams.
    pub fn objects(&self) -> Vec<ObjectId> {
        let mut objects = self
            .0
            .iter()
            .map(|p| *p.object_id())
            .collect::<std::collections::HashSet<_>>();

        objects.drain().collect()
    }
}

impl From<Vec<ChunkPointer>> for Stream {
    fn from(ptrs: Vec<ChunkPointer>) -> Self {
        Self(ptrs)
    }
}

/// Reader for an infinite stream spanning arbitrary number of objects.
///
/// For more details about internals, look at [`BufferedSink`].
pub struct BufferedStream<Reader = AEADReader> {
    reader: Reader,
    buffer: BlockBuffer,
    chunks: Vec<ChunkPointer>,
    pos: Option<usize>,
    len: Option<usize>,
}

impl<R: Reader> BufferedStream<R> {
    fn open_next_chunk(&mut self) -> io::Result<Option<usize>> {
        // we expect the list to be reversed in order, so we can just pop
        let ptr = match self.chunks.pop() {
            Some(ptr) => ptr,
            _ => return Ok(None),
        };

        let chunk = self
            .reader
            .read_chunk(&ptr, self.buffer.as_mut())
            .map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;

        Ok(Some(chunk.len()))
    }
}

impl<R: Reader> Read for BufferedStream<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let mut written = 0;

        while written < buf.len() {
            match (self.pos, self.len) {
                (Some(pos), Some(len)) if pos != len => {
                    let size = (buf.len() - written).min(len - pos);
                    buf[written..written + size].copy_from_slice(&self.buffer[pos..pos + size]);

                    self.pos = Some(pos + size);
                    written += size;
                }
                _ => match self.open_next_chunk()? {
                    Some(len) => {
                        self.pos = Some(0);
                        self.len = Some(len);
                    }
                    _ => break,
                },
            }
        }

        Ok(written)
    }
}

/// Buffered object writer that supports `std::io::Write`.
///
/// Due to performance and storage waste considerations, this will
/// generate a new chunk roughly about every 500kB of the input
/// stream.
///
/// You need to take this into account when you want to create the
/// indexes around the stream, as every [`ChunkPointer`] is 88 bytes
/// in size, which will occupy memory and storage.
///
/// Note that you can't [`std::io::Seek`] in this stream at this point
/// when reading it.
///
/// # Examples
///
/// ```
/// use std::io::Write;
/// use infinitree::{*, crypto::UsernamePassword, fields::Serialized, backends::test::InMemoryBackend, object::{Stream, BufferedSink}};
///
/// let mut tree = Infinitree::<infinitree::fields::VersionedMap<String, Stream>>::empty(
///     InMemoryBackend::shared(),
///     UsernamePassword::with_credentials("username".to_string(), "password".to_string()).unwrap()
/// ).unwrap();
///
/// let mut sink = BufferedSink::new(tree.storage_writer().unwrap());
///
/// sink.write(b"it's going in the sink");
/// tree.index().insert("message_1".to_string(), sink.finish().unwrap());
/// tree.commit(None);
/// ```
pub struct BufferedSink<Writer = super::AEADWriter, Buffer = BlockBuffer> {
    writer: Writer,
    buffer: Buffer,
    chunks: Vec<ChunkPointer>,
    pos: usize,
    len: usize,
    chunk_size: usize,
}

impl<W> BufferedSink<W>
where
    W: Writer,
{
    /// Create a new [`BufferedSink`] with the underlying
    /// [`Writer`][crate::object::Writer] instance.
    pub fn new(writer: W) -> BufferedSink<W> {
        Self::with_chunk_size(writer, CHUNK_SIZE)
    }

    /// Create a new [`BufferedSink`] with a custom chunk size
    ///
    /// The default chunk size is `500 * 1024` bytes, which
    /// experientially is a good trade-off for various stream sizes,
    /// as it will minimize storage overhead.
    pub fn with_chunk_size(writer: W, chunk_size: usize) -> Self {
        Self {
            writer,
            buffer: BlockBuffer::default(),
            chunks: vec![],
            pos: 0,
            len: 0,
            chunk_size,
        }
    }
}

impl<W, Buffer> BufferedSink<W, Buffer>
where
    W: Writer,
    Buffer: AsMut<[u8]>,
{
    /// Create a new [`BufferedSink`] with the underlying
    /// [`Writer`][crate::object::Writer] and buffer.
    pub fn with_buffer(writer: W, mut buffer: Buffer) -> super::Result<Self> {
        if buffer.as_mut().len() < CHUNK_SIZE {
            return Err(super::ObjectError::BufferTooSmall {
                min_size: CHUNK_SIZE,
                buf_size: buffer.as_mut().len(),
            });
        }

        Ok(Self {
            writer,
            buffer,
            chunks: vec![],
            pos: 0,
            len: 0,
            chunk_size: CHUNK_SIZE,
        })
    }

    /// Set the maximum size for chunks.
    ///
    /// # Errors
    ///
    /// Will return an error if the underlying buffer is too small.
    pub fn set_chunk_size(mut self, size: usize) -> super::Result<Self> {
        if self.buffer.as_mut().len() < size {
            return Err(super::ObjectError::BufferTooSmall {
                min_size: CHUNK_SIZE,
                buf_size: self.buffer.as_mut().len(),
            });
        }

        self.chunk_size = size;
        Ok(self)
    }

    /// Return the current effective maximum chunk size.
    pub fn chunk_size(&self) -> usize {
        self.chunk_size
    }

    /// Clear the internal buffer without flushing the underlying [`Writer`].
    ///
    /// Calling `clear()` over [`finish`][Self::finish] allows re-using the same buffer
    /// and avoids fragmenting data written to storage.
    ///
    /// Returns the stream's descriptor which can be freely serialized or used in an index.
    pub fn clear(&mut self) -> super::Result<Stream> {
        self.empty_buffer()?;

        self.pos = 0;
        self.len = 0;
        self.buffer.as_mut().fill(0);

        let chunks = Stream(self.chunks.clone());
        self.chunks.clear();
        Ok(chunks)
    }

    /// Finish using the `BufferedSink` instance, flush and close the underlying Writer.
    ///
    /// Returns the stream's descriptor which can be freely serialized or used in an index.
    pub fn finish(mut self) -> super::Result<Stream> {
        self.empty_buffer()?;
        self.flush()?;
        Ok(Stream(self.chunks))
    }

    fn empty_buffer(&mut self) -> super::Result<()> {
        let internal = self.buffer.as_mut();

        if self.len > 0 {
            self.chunks.push(self.writer.write(&internal[0..self.len])?);
        }

        Ok(())
    }
}

impl<W, Buffer> Write for BufferedSink<W, Buffer>
where
    W: Writer,
    Buffer: AsMut<[u8]>,
{
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let read_size = |start: usize, pos: usize| (CHUNK_SIZE - pos).min(buf.len() - start);

        let mut start = 0;
        let mut size = read_size(start, self.pos);

        while size > 0 {
            let end = start + size;
            self.len += size;

            self.buffer.as_mut()[self.pos..self.len].copy_from_slice(&buf[start..end]);

            if self.len == CHUNK_SIZE {
                self.empty_buffer()
                    .map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;

                self.pos = 0;
                self.len = 0;
                self.buffer.as_mut().fill(0);
            } else {
                self.pos += size;
            }

            start += size;
            size = read_size(start, self.pos);
        }

        Ok(start)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.writer
            .flush()
            .map_err(|err| io::Error::new(io::ErrorKind::Other, err))
    }
}

#[cfg(test)]
mod tests {
    use crate::crypto::Scheme;

    #[test]
    fn large_buffer_write_then_read() {
        use super::{
            super::{AEADReader, AEADWriter},
            BufferedSink,
        };
        use crate::{backends::test::InMemoryBackend, crypto::UsernamePassword};
        use std::io::{Read, Write};

        let key =
            UsernamePassword::with_credentials("asdf".to_string(), "fdsa".to_string()).unwrap();
        let backend = InMemoryBackend::shared();
        let mut sink =
            BufferedSink::new(AEADWriter::new(backend.clone(), key.chunk_key().unwrap()));

        // note this is an extreme case, so this test is slow.  the
        // input simultaneously compresses incredibly well, and is
        // hitting an edge case of the `lz4_flex` library, because it's so big.
        //
        // the result is that we generate a lot of chunks, and it's really slow
        const SIZE: usize = 3 * crate::BLOCK_SIZE;
        let buffer = vec![123u8; SIZE];

        assert_eq!(SIZE, sink.write(&buffer).unwrap());

        let chunks = sink.finish().unwrap();
        assert_eq!(25, chunks.0.len());

        let mut buffer2 = vec![0u8; SIZE];
        chunks
            .open_reader(AEADReader::new(backend, key.chunk_key().unwrap()))
            .read(&mut buffer2)
            .unwrap();

        assert_eq!(buffer, buffer2);
    }
}