1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
//! Infinity for types without infinite values
//!
//! Infinitable introduces the notion of "infinity" and "negative infinity"
//! to numeric types, such as integers, that do not have infinite values.
//!
//! A representation of infinity is useful for graph algorithms such as
//! Dijkstra's algorithm, as well as for representing a graph with an
//! adjacency matrix.
//!
//! # Basic Usage
//!
//! ```
//! use infinitable::*;
//!
//! let finite = Finite(5);
//! let infinity = Infinity;
//! let negative_infinity = NegativeInfinity;
//!
//! assert!(finite < infinity);
//! assert!(finite > negative_infinity);
//! ```

#![cfg_attr(not(test), no_std)]

#[cfg(test)]
extern crate core;

use core::cmp::Ordering;
use core::fmt;
use core::fmt::{Display, Formatter};
use core::ops::Neg;

/// An "infinitable" value, one that can be either finite or infinite
///
/// # Versioning
///
/// Available since 1.0.0. Variants are re-exported since 1.3.0.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum Infinitable<T> {
    /// A finite value `T`
    Finite(T),
    /// Positive infinity, which compares greater than all other values
    Infinity,
    /// Negative infinity, which compares less than all other values
    NegativeInfinity,
}

pub use Infinitable::{Finite, Infinity, NegativeInfinity};

impl<T> Infinitable<T> {
    /// Returns `true` if the value is [`Finite`].
    ///
    /// # Examples
    ///
    /// ```
    /// use infinitable::*;
    ///
    /// let finite = Finite(5);
    /// assert!(finite.is_finite());
    /// let infinite: Infinitable<i32> = Infinity;
    /// assert!(!infinite.is_finite());
    /// ```
    ///
    /// # Versioning
    ///
    /// Available since 1.0.0.
    #[must_use]
    pub fn is_finite(&self) -> bool {
        match self {
            Finite(_) => true,
            _ => false,
        }
    }

    /// Converts from an `Infinitable<T>` to an [`Option<T>`].
    ///
    /// Converts `self` into an [`Option<T>`] possibly containing
    /// a finite value, consuming `self`.
    ///
    /// # Examples
    ///
    /// ```
    /// use infinitable::*;
    ///
    /// let finite = Finite(5);
    /// assert_eq!(Some(5), finite.finite());
    /// let infinite: Infinitable<i32> = Infinity;
    /// assert_eq!(None, infinite.finite());
    /// ```
    ///
    /// # Versioning
    ///
    /// Available since 1.1.0.
    #[must_use]
    pub fn finite(self) -> Option<T> {
        match self {
            Finite(x) => Some(x),
            _ => None,
        }
    }

    /// Converts from [`Option<T>`] to [`Finite`] or [`Infinity`].
    ///
    /// <code>[Some]\(T)</code> is converted to <code>[Finite]\(T)</code>,
    /// and [`None`] is converted to [`Infinity`].
    ///
    /// # Examples
    ///
    /// ```
    /// use infinitable::*;
    ///
    /// let finite = Finite(5);
    /// assert_eq!(finite, Infinitable::finite_or_infinity(Some(5)));
    /// let infinite: Infinitable<i32> = Infinity;
    /// assert_eq!(infinite, Infinitable::finite_or_infinity(None));
    /// ```
    ///
    /// # Versioning
    ///
    /// Available since 1.3.0.
    #[must_use]
    pub fn finite_or_infinity(option: Option<T>) -> Infinitable<T> {
        match option {
            Some(x) => Finite(x),
            None => Infinity,
        }
    }

    /// Converts from [`Option<T>`] to [`Finite`] or [`NegativeInfinity`].
    ///
    /// <code>[Some]\(T)</code> is converted to <code>[Finite]\(T)</code>,
    /// and [`None`] is converted to [`NegativeInfinity`].
    ///
    /// # Examples
    ///
    /// ```
    /// use infinitable::*;
    ///
    /// let finite = Finite(5);
    /// assert_eq!(finite, Infinitable::finite_or_negative_infinity(Some(5)));
    /// let infinite: Infinitable<i32> = NegativeInfinity;
    /// assert_eq!(infinite, Infinitable::finite_or_negative_infinity(None));
    /// ```
    ///
    /// # Versioning
    ///
    /// Available since 1.3.0.
    #[must_use]
    pub fn finite_or_negative_infinity(option: Option<T>) -> Infinitable<T> {
        match option {
            Some(x) => Finite(x),
            None => NegativeInfinity,
        }
    }
}

impl<T> From<T> for Infinitable<T> {
    /// Converts from a value `T` to [`Finite`] containing the underlying value.
    ///
    /// # Examples
    ///
    /// ```
    /// use infinitable::*;
    ///
    /// let finite = Infinitable::from(5);
    /// assert_eq!(Finite(5), finite);
    ///
    /// // Warning: There is no special handling for pre-existing infinite values
    /// let fp_infinity = Infinitable::from(f32::INFINITY);
    /// assert_eq!(Finite(f32::INFINITY), fp_infinity);
    /// assert_ne!(Infinity, fp_infinity);
    /// ```
    ///
    /// # Versioning
    ///
    /// Available since 1.2.0.
    fn from(value: T) -> Infinitable<T> {
        Finite(value)
    }
}

/// Partial order, where the underlying type `T` implements a partial order.
///
/// [`NegativeInfinity`] compares less than all other values,
/// and [`Infinity`] compares greater than all other values.
///
/// # Examples
///
/// ```
/// use infinitable::*;
/// use std::cmp::Ordering;
///
/// let finite = Finite(5);
/// let infinity = Infinity;
/// let negative_infinity = NegativeInfinity;
///
/// assert_eq!(Some(Ordering::Less), finite.partial_cmp(&infinity));
/// assert_eq!(Some(Ordering::Greater), finite.partial_cmp(&negative_infinity));
/// ```
///
/// # Versioning
///
/// Available since 1.0.0.
impl<T> PartialOrd for Infinitable<T>
where
    T: PartialOrd,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        match cmp_initial(self, other) {
            CmpInitialResult::Infinite(o) => Some(o),
            CmpInitialResult::Finite(x, y) => x.partial_cmp(y),
        }
    }
}

/// Total order, where the underlying type `T` implements a total order.
///
/// [`NegativeInfinity`] compares less than all other values,
/// and [`Infinity`] compares greater than all other values.
///
/// # Examples
///
/// ```
/// use infinitable::*;
/// use std::cmp::Ordering;
///
/// let finite = Finite(5);
/// let infinity = Infinity;
/// let negative_infinity = NegativeInfinity;
///
/// assert_eq!(Ordering::Less, finite.cmp(&infinity));
/// assert_eq!(Ordering::Greater, finite.cmp(&negative_infinity));
/// ```
///
/// # Versioning
///
/// Available since 1.0.0.
impl<T> Ord for Infinitable<T>
where
    T: Ord,
{
    fn cmp(&self, other: &Self) -> Ordering {
        match cmp_initial(self, other) {
            CmpInitialResult::Infinite(o) => o,
            CmpInitialResult::Finite(x, y) => x.cmp(y),
        }
    }
}

enum CmpInitialResult<'a, T> {
    Infinite(Ordering),
    Finite(&'a T, &'a T),
}

fn cmp_initial<'a, T>(x: &'a Infinitable<T>, y: &'a Infinitable<T>) -> CmpInitialResult<'a, T> {
    match (x, y) {
        (Infinity, Infinity) | (NegativeInfinity, NegativeInfinity) => {
            CmpInitialResult::Infinite(Ordering::Equal)
        }
        (Infinity, _) | (_, NegativeInfinity) => CmpInitialResult::Infinite(Ordering::Greater),
        (NegativeInfinity, _) | (_, Infinity) => CmpInitialResult::Infinite(Ordering::Less),
        (Finite(xf), Finite(yf)) => CmpInitialResult::Finite(xf, yf),
    }
}

impl<T> Neg for Infinitable<T>
where
    T: Neg,
{
    type Output = Infinitable<T::Output>;

    /// Negates the value, when the underlying type `T` supports negation.
    ///
    /// [`Infinity`] is negated to [`NegativeInfinity`] (and vice versa),
    /// and [`Finite`] is negated based on the underlying value.
    ///
    /// # Examples
    ///
    /// ```
    /// use infinitable::*;
    ///
    /// let finite = Finite(5);
    /// assert_eq!(Finite(-5), -finite);
    /// let infinity: Infinitable<i32> = Infinity;
    /// assert_eq!(NegativeInfinity, -infinity);
    /// let negative_infinity: Infinitable<i32> = NegativeInfinity;
    /// assert_eq!(Infinity, -negative_infinity);
    /// ```
    ///
    /// # Versioning
    ///
    /// Available since 1.3.0.
    fn neg(self) -> Infinitable<T::Output> {
        match self {
            Finite(x) => Finite(-x),
            Infinity => NegativeInfinity,
            NegativeInfinity => Infinity,
        }
    }
}

impl<T> Display for Infinitable<T>
where
    T: Display,
{
    /// Formats the value, where the underlying type `T` supports formatting.
    ///
    /// [`Infinity`] is formatted to `"inf"`, [`NegativeInfinity`] is formatted
    /// to `"-inf"`, and [`Finite`] is formatted based on the underlying value.
    ///
    /// # Examples
    ///
    /// ```
    /// use infinitable::*;
    ///
    /// let finite = Finite(5);
    /// assert_eq!("5", format!("{}", finite));
    /// let infinity: Infinitable<i32> = Infinity;
    /// assert_eq!("inf", format!("{}", infinity));
    /// let negative_infinity: Infinitable<i32> = NegativeInfinity;
    /// assert_eq!("-inf", format!("{}", negative_infinity));
    /// ```
    ///
    /// # Versioning
    ///
    /// Available since 1.2.0.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        match self {
            Finite(x) => write!(f, "{}", x),
            Infinity => write!(f, "inf"),
            NegativeInfinity => write!(f, "-inf"),
        }
    }
}