1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
//! Infinity for types without infinite values
//!
//! Infinitable introduces the notion of "infinity" and "negative infinity"
//! to numeric types, such as integers, that do not have infinite values.
//!
//! A representation of infinity is useful for graph algorithms such as
//! Dijkstra's algorithm, as well as for representing a graph with an
//! adjacency matrix.
//!
//! # Basic Usage
//!
//! ```
//! use infinitable::*;
//!
//! let finite = Finite(5);
//! let infinity = Infinity;
//! let negative_infinity = NegativeInfinity;
//!
//! assert!(finite < infinity);
//! assert!(finite > negative_infinity);
//! ```

use std::cmp::Ordering;
use std::ops::Neg;
use std::fmt;
use std::fmt::{Display,Formatter};

/// An "infinitable" value, one that can be either finite or infinite
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum Infinitable<T> {
	/// A finite value `T`
	Finite(T),
	/// Positive infinity, which compares greater than all finite values
	Infinity,
	/// Negative infinity, which compares less than all finite values
	NegativeInfinity,
}

pub use Infinitable::{Finite,Infinity,NegativeInfinity};

impl<T> Infinitable<T> {
	/// Returns `true` if the value is `Finite`.
	///
	/// # Examples
	///
	/// ```
	/// use infinitable::Finite;
	///
	/// let finite = Finite(5);
	/// assert!(finite.is_finite());
	/// ```
	pub fn is_finite(&self) -> bool {
		match self {
			&Finite(_) => true,
			_ => false,
		}
	}

	/// Converts from an `Infinitable<T>` to an `Option<T>`.
	///
	/// Converts `self` into an `Option<T>` possibly containing a finite value,
	/// consuming `self`.
	///
	/// # Examples
	///
	/// ```
	/// use infinitable::*;
	///
	/// let finite = Finite(5);
	/// assert_eq!(Some(5), finite.finite());
	/// let infinite: Infinitable<i32> = Infinity;
	/// assert_eq!(None, infinite.finite());
	/// ```
	pub fn finite(self) -> Option<T> {
		match self {
			Finite(x) => Some(x),
			_ => None,
		}
	}

	/// Converts from an `Option<T>` to either `Finite` or `Infinity`.
	///
	/// Converts an `Option<T>` to an `Infinitable<T>`. `Some(T)` is converted
	/// to `Finite(T)`, and `None` is converted to `Infinity`.
	///
	/// # Examples
	///
	/// ```
	/// use infinitable::*;
	///
	/// let finite = Finite(5);
	/// assert_eq!(finite, Infinitable::finite_or_infinity(Some(5)));
	/// let infinite: Infinitable<i32> = Infinity;
	/// assert_eq!(infinite, Infinitable::finite_or_infinity(None));
	/// ```
	pub fn finite_or_infinity(option: Option<T>) -> Infinitable<T> {
		match option {
			Some(x) => Finite(x),
			None => Infinity,
		}
	}

	/// Converts from an `Option<T>` to either `Finite` or `NegativeInfinity`.
	///
	/// Converts an `Option<T>` to an `Infinitable<T>`. `Some(T)` is converted
	/// to `Finite(T)`, and `None` is converted to `NegativeInfinity`.
	///
	/// # Examples
	///
	/// ```
	/// use infinitable::*;
	///
	/// let finite = Finite(5);
	/// assert_eq!(finite, Infinitable::finite_or_negative_infinity(Some(5)));
	/// let infinite: Infinitable<i32> = NegativeInfinity;
	/// assert_eq!(infinite, Infinitable::finite_or_negative_infinity(None));
	/// ```
	pub fn finite_or_negative_infinity(option: Option<T>) -> Infinitable<T> {
		match option {
			Some(x) => Finite(x),
			None => NegativeInfinity,
		}
	}
}

impl<T> From<T> for Infinitable<T> {
	fn from(value: T) -> Infinitable<T> {
		Finite(value)
	}
}

impl<T> PartialOrd for Infinitable<T> where T: PartialOrd {
	fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
		match cmp_initial(self, other) {
			CmpInitialResult::Infinite(o) => Some(o),
			CmpInitialResult::Finite(x, y) => x.partial_cmp(y),
		}
	}
}

impl<T> Ord for Infinitable<T> where T: Ord {
	fn cmp(&self, other: &Self) -> Ordering {
		match cmp_initial(self, other) {
			CmpInitialResult::Infinite(o) => o,
			CmpInitialResult::Finite(x, y) => x.cmp(y),
		}
	}
}

enum CmpInitialResult<'a, T> {
	Infinite(Ordering),
	Finite(&'a T, &'a T),
}

fn cmp_initial<'a, T>(x: &'a Infinitable<T>, y: &'a Infinitable<T>)
	-> CmpInitialResult<'a, T> {
	match (x, y) {
		(&Infinity, &Infinity) | (&NegativeInfinity, &NegativeInfinity)
			=> CmpInitialResult::Infinite(Ordering::Equal),
		(&Infinity, _) | (_, &NegativeInfinity)
			=> CmpInitialResult::Infinite(Ordering::Greater),
		(&NegativeInfinity, _) | (_, &Infinity)
			=> CmpInitialResult::Infinite(Ordering::Less),
		(&Finite(ref xf), &Finite(ref yf))
			=> CmpInitialResult::Finite(xf, yf),
	}
}

impl<T> Neg for Infinitable<T> where T: Neg {
	type Output = Infinitable<T::Output>;

	fn neg(self) -> Infinitable<T::Output> {
		match self {
			Finite(x) => Finite(-x),
			Infinity => NegativeInfinity,
			NegativeInfinity => Infinity,
		}
	}
}

impl<T> Display for Infinitable<T> where T: Display {
	fn fmt(&self, f: &mut Formatter) -> fmt::Result {
		match self {
			&Finite(ref x) => write!(f, "{}", x),
			&Infinity => write!(f, "inf"),
			&NegativeInfinity => write!(f, "-inf"),
		}
	}
}