1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
use crate::{MinMax,F64,inf64,Indices,Vecops, Mutops};
use core::ops::Range;

impl<T> Vecops<T> for &[T] {

/// Helper function to copy and cast entire &[T] to `Vec<f64>`.
/// Like the standard `.to_vec()` method but also recasts to f64 end type
fn tof64(self) -> Vec<f64> where T: Copy, f64: From<T>, {
    self.iter().map(|&x| f64::from(x)).collect()
}

/// Maximum value T of slice &[T]
fn maxt(self) -> T where T: PartialOrd+Copy {
    let mut max = &self[0];
    self.iter().skip(1).for_each(|s| {
        if s > max { max = s }
    });
    *max
}

/// Minimum value T of slice &[T]
fn mint(self) -> T where T: PartialOrd+Copy {
    let mut min = &self[0];
    self.iter().skip(1).for_each(|s| {
        if s < min { min = s }
    });
    *min
}

/// Minimum and maximum (T,T) of a slice &[T]
fn minmaxt(self) -> (T, T) where T: PartialOrd+Copy {
    let mut x1 = self[0];
    let mut x2 = x1;
    self.iter().skip(1).for_each(|&s| {
        if s < x1 { x1 = s } 
        else if s > x2 { x2 = s };
    });
    (x1, x2)
}

/// Minimum, minimum's first index, maximum, maximum's first index
fn minmax(self) -> MinMax<T> where T: PartialOrd+Copy {
    let mut min = self[0];
    let mut max = min; // initialise both to the first item
    let (mut minindex, mut maxindex) = (0, 0); // indices of min, max
    self.iter().enumerate().skip(1).for_each(|(i, &x)| {
        if x < min { min = x; minindex = i; } 
        else if x > max { max = x; maxindex = i }
    });
    MinMax {
        min,
        minindex,
        max,
        maxindex,
    }
}

/// Finds min and max of a subset of self, defined by its subslice between i,i+n.
/// Returns min of self, its index, max of self, its index.
fn minmax_slice(self, i:usize, n:usize) -> MinMax<T> where T: PartialOrd+Copy {
    let mut min = self[i];
    let mut max = min;
    let mut minindex = i; // indices of min, max 
    let mut maxindex = minindex;
    for (j,&x) in self.iter().enumerate().skip(i+1).take(n-1) {
        if x < min { min = x; minindex = j; } 
        else if x > max { max = x; maxindex = j; };
    };
    MinMax { min, minindex, max, maxindex }
}

/// Using only a subset of self, defined by its idx subslice between i,i+n.
/// Returns min of self, its index's index, max of self, its index's index.
fn minmax_indexed(self, idx:&[usize], i:usize, n:usize) -> MinMax<T>
    where T: PartialOrd+Copy {
    let mut min = self[idx[i]];
    let mut max = min;
    let mut minix = 0; // indices of indices of min, max 
    let mut maxix = minix;
    for (ii,&ix) in idx.iter().enumerate().skip(i+1).take(n-1) {
        if self[ix] < min { min = self[ix]; minix = ii; } 
        else if self[ix] > max { max = self[ix]; maxix = ii; };
    };
    MinMax { min, minindex:minix, max, maxindex:maxix }
}

/// Reverse a generic slice by reverse iteration.
/// Creates a new Vec. Its naive use for descending sort etc.
/// is to be avoided for efficiency reasons.
fn revs(self) -> Vec<T> where T: Copy {
    self.iter().rev().copied().collect::<Vec<T>>()
}

/// Removes repetitions from an explicitly ordered set.
fn sansrepeat(self) -> Vec<T> where T: PartialEq+Copy { 
    if self.len() < 2 { return self.to_vec(); };
    let mut r: Vec<T> = Vec::new();
    let mut last: T = self[0];
    r.push(last);
    self.iter().skip(1).for_each(|&si| {
        if si != last { last = si; r.push(si) }
    });
    r
}

/// Finds the first/last occurence of item `m` in self by forward/backward iteration.
/// Returns `Some(index)` of the found item or `None`.
/// Suitable for small unordered lists.
/// For longer lists, it is better to sort them and use `memsearch` (see below).
/// For repeated tests, index sort first and then use memsearch_indexed. 
fn member(self,m: T,forward: bool) -> Option<usize> where T: PartialEq+Copy {
    if forward {
        for (i, &x) in self.iter().enumerate() { 
            if x == m { return Some(i); }; 
        };
        None
    } 
    else {
        for (i, &x) in self.iter().rev().enumerate() { 
            if x == m { return Some(self.len()-i-1); }; 
        };
        None
    }
}

/// Binary search of an explicitly sorted list in ascending or descending order.
/// Returns range of index values matching val. Can be empty. 
/// range.start is where first val is, or  when missing, could be inserted in the correct sort order.
fn binsearch(self, val: &T, ascending:bool ) -> Range<usize> where T: PartialOrd {
    let pcomp = if ascending { |a:&T,b:&T| a > b } else { |a:&T,b:&T| a < b };
    let n = self.len();
    if n == 0 { return 0..0; }; // empty self, val could be inserted at index 0
    let mut hi = n - 1; // initial high index
    if !pcomp(val,&self[0]) { // val is before or partially equal to the first item
        let mut count = 0_usize; // initially no matches
        for s in self.iter() { // count up all matching items 
            if pcomp(s,val) { break; } else { count += 1; };
        };
        return 0..count;
    };
    if !pcomp(&self[hi],val) { // val is after or partially equal to the last item
        let mut count = 0_usize;
        for s in self.iter().rev() { // count down all matching items
            if pcomp(val,s) { break; } else { count += 1; };
        };
        return n-count..n;
    };
    let mut lo = 0; // initial low index
    loop {
        let mid = (lo + hi) / 2; // binary chop here
        if mid > lo {
            if pcomp(val,&self[mid]) { lo = mid; continue; };
            if pcomp(&self[mid],val) { hi = mid; continue; }; 
            // neither greater nor smaller, hence we found a match
            let mut upcount = 0_usize; // initially no matches
            for s in self.iter().skip(mid) { // count up matching items
                if pcomp(s,val) { break; } else { upcount += 1; }; 
            };
            let mut downcount = 0_usize; // initially no matches
            for s in self.iter().take(mid).rev() { // count down matching items
                if pcomp(val,s) { break; } else { downcount += 1; }; 
            };
            return mid-downcount..mid+upcount;            
        }
        else { return hi..hi }; // interval gone, not found
    }
}

/// Like binsearch but using a sort index idx (ascending or descending).
/// Ordering is by indirection, through idx.
/// Returns range of idx items pointing at all occurrence of val in self.
/// When val was not found, range.start gives the position in idx where it could be inserted.
fn binsearch_indexed(self, idx:&[usize], val: &T, ascending:bool) -> Range<usize>
    where T: PartialOrd {
    let pcomp = if ascending { |a:&T,b:&T| a > b } else { |a:&T,b:&T| a < b };
    let n = self.len();
    if n == 0 { return 0..0; }; // empty self, val could be inserted at index 0
    let mut hi = n - 1; // initial high index
    if !pcomp(val,&self[idx[0]]) { // val is before or partially equal to the first item
        let mut count = 0_usize; // initially no matches
        for &s in idx.iter() { // count up all matching items             
            if pcomp(&self[s],val) { break; } else { count += 1; };
        };
        return 0..count;
    };
    if !pcomp(&self[idx[hi]],val) { // val is after or partially equal to the last item
        let mut count = 0_usize;
        for &s in idx.iter().rev() { // count down all matching items
            if pcomp(val,&self[s]) { break; } else { count += 1; };
        };
        return n-count..n;
    };
    let mut lo = 0; // initial low index
    loop {
        let mid = (lo + hi) / 2; // binary chop here
        if mid > lo {
            if pcomp(val,&self[idx[mid]]) { lo = mid; continue; };
            if pcomp(&self[idx[mid]],val) { hi = mid; continue; }; 
            // neither greater nor smaller, hence we found a match
            let mut upcount = 0_usize; // initially no matches
            for &s in idx.iter().skip(mid) { // count up matching items
                if pcomp(&self[s],val) { break; } else { upcount += 1; }; 
            };
            let mut downcount = 0_usize; // initially no matches
            for &s in idx.iter().take(mid).rev() { // count down matching items
                if pcomp(val,&self[s]) { break; } else { downcount += 1; }; 
            };
            return mid-downcount..mid+upcount;            
        }
        else { return hi..hi } // interval gone, not found
    }
}

/// Counts partial equal occurrences of val by simple linear search of any unordered set
fn occurs(self, val:T) -> usize where T: PartialOrd {
    let mut count:usize = 0;
    for s in self {
        if val < *s { continue;};
        if val > *s { continue;};
        count += 1;
    };
    count
}

/// Unites (joins) two unsorted sets. For union of sorted sets, use `merge`
fn unite_unsorted(self, v: &[T]) -> Vec<T> where T: Clone {
    [self, v].concat()
}

/// Unites two ascending index-sorted generic vectors.
/// This is the union of two index sorted sets.
/// Returns a single explicitly ordered set.
fn unite_indexed(self, ix1: &[usize], v2: &[T], ix2: &[usize]) -> Vec<T>
    where T: PartialOrd+Copy {
    let l1 = self.len();
    let l2 = v2.len();
    let mut resvec: Vec<T> = Vec::new();
    let mut i1 = 0;
    let mut i2 = 0;

    loop {
        if i1 == l1 {
            // v1 is now processed
            for i in i2..l2 {
                resvec.push(v2[ix2[i]])
            } // copy out the rest of v2
            break; // and terminate
        }
        if i2 == l2 {
            // v2 is now processed
            for i in i1..l1 {
                resvec.push(self[ix1[i]])
            } // copy out the rest of v1
            break; // and terminate
        }
        if self[ix1[i1]] < v2[ix2[i2]] {
            resvec.push(self[ix1[i1]]);
            i1 += 1;
            continue;
        };
        if self[ix1[i1]] > v2[ix2[i2]] {
            resvec.push(v2[ix2[i2]]);
            i2 += 1;
            continue;
        };
        // here they are equal, so consume the first, skip both
        resvec.push(self[ix1[i1]]);
        i1 += 1;
        i2 += 1
    }
    resvec
}

/// Intersects two ascending explicitly sorted generic vectors.
fn intersect(self, v2: &[T]) -> Vec<T> where T: PartialOrd+Copy {
    let l1 = self.len();
    let l2 = v2.len();
    let mut resvec: Vec<T> = Vec::new();
    let mut i1 = 0;
    let mut i2 = 0;

    loop {
        if i1 == l1 {
            break;
        } // v1 is now empty
        if i2 == l2 {
            break;
        } // v2 is now empty
        if self[i1] < v2[i2] {
            i1 += 1;
            continue;
        };
        if self[i1] > v2[i2] {
            i2 += 1;
            continue;
        };
        // here they are equal, so consume one, skip both
        resvec.push(self[i1]);
        i1 += 1;
        i2 += 1
    }
    resvec
}

/// Intersects two ascending index-sorted generic vectors.
/// Returns a single explicitly ordered set.
fn intersect_indexed(self, ix1: &[usize], v2: &[T], ix2: &[usize]) -> Vec<T>
    where T: PartialOrd+Copy {
    let l1 = self.len();
    let l2 = v2.len();
    let mut resvec: Vec<T> = Vec::new();
    let mut i1 = 0;
    let mut i2 = 0;

    loop {
        if i1 == l1 {
            break;
        } // v1 is now processed, terminate
        if i2 == l2 {
            break;
        } // v2 is now processed, terminate
        if self[ix1[i1]] < v2[ix2[i2]] {
            i1 += 1;
            continue;
        }; // skip v1 value
        if self[ix1[i1]] > v2[ix2[i2]] {
            i2 += 1;
            continue;
        }; // skip v2 value
           // here they are equal, so consume the first
        resvec.push(self[ix1[i1]]);
        i1 += 1;
        i2 += 1
    }
    resvec
}

/// Sets difference: deleting elements of the second from the first.
/// Two ascending explicitly sorted generic vectors.
fn diff(self, v2: &[T]) -> Vec<T> where T: PartialOrd+Copy {
    let l1 = self.len();
    let l2 = v2.len();
    let mut resvec: Vec<T> = Vec::new();
    let mut i1 = 0;
    let mut i2 = 0;

    loop {
        if i1 == l1 {
            break;
        } // v1 is now empty
        if i2 == l2 {
            self.iter().skip(i1).for_each(|&v| resvec.push(v)); // copy out the rest of v1
            break; // and terminate
        }
        if self[i1] < v2[i2] {
            resvec.push(self[i1]);
            i1 += 1;
            continue;
        }; // this v1 survived
        if self[i1] > v2[i2] {
            i2 += 1;
            continue;
        }; // this v2 is unused
           // here they are equal, so subtract them out, i.e. skip both
        i1 += 1;
        i2 += 1
    }
    resvec
}

/// Sets difference: deleting elements of the second from the first.
/// Two ascending index sorted generic vectors.
fn diff_indexed(self, ix1: &[usize], v2: &[T], ix2: &[usize]) -> Vec<T>
    where T: PartialOrd+Copy {
    let l1 = self.len();
    let l2 = v2.len();
    let mut resvec: Vec<T> = Vec::new();
    let mut i1 = 0;
    let mut i2 = 0;

    loop {
        if i1 == l1 {
            break;
        } // v1 is now empty
        if i2 == l2 {
            for i in i1..l1 {
                resvec.push(self[ix1[i]])
            } // copy out the rest of v1
            break; // and terminate
        }
        if self[ix1[i1]] < v2[ix2[i2]] {
            resvec.push(self[ix1[i1]]);
            i1 += 1;
            continue;
        }; // this v1 survived
        if self[ix1[i1]] > v2[ix2[i2]] {
            i2 += 1;
            continue;
        }; // this v2 is unused
           // here they are equal, so subtract them out, i.e. skip both
        i1 += 1;
        i2 += 1
    }
    resvec
}

/// Partition with respect to a pivot into three sets
fn partition(self, pivot:T) -> (Vec<T>, Vec<T>, Vec<T>)
    where T: PartialOrd+Copy {
    let n = self.len();
    let mut negset: Vec<T> = Vec::with_capacity(n);
    let mut eqset: Vec<T> = Vec::with_capacity(n);
    let mut posset: Vec<T> = Vec::with_capacity(n);
    for &item in self {
        if item < pivot { negset.push(item) }
        else if item > pivot  { posset.push(item) }
        else  { eqset.push(item) };  
    }; 
    (negset, eqset, posset)
}

/// Partition by pivot gives three sets of indices.
fn partition_indexed(self, pivot: T) -> (Vec<usize>, Vec<usize>, Vec<usize>)
    where T: PartialOrd+Copy {
    let n = self.len();
    let mut negset: Vec<usize> = Vec::with_capacity(n);
    let mut eqset: Vec<usize> = Vec::with_capacity(n);
    let mut posset: Vec<usize> = Vec::with_capacity(n);
    for (i, &vi) in self.iter().enumerate() {
        if vi < pivot { negset.push(i) }
        else if vi > pivot  { posset.push(i) }
        else  { eqset.push(i) };  
    }; 
    (negset, eqset, posset)
}

/// Merges two explicitly ascending sorted generic vectors,
/// by classical selection and copying of their head items into the result.
/// Consider using merge_indexed instead, especially for non-primitive end types T.
fn merge(self, v2: &[T]) -> Vec<T> where T: PartialOrd+Copy {
    let l1 = self.len();
    let l2 = v2.len();
    let mut resvec: Vec<T> = Vec::with_capacity(l1 + l2);
    let mut i1 = 0;
    let mut i2 = 0;
    loop {
        if i1 == l1 {
            // v1 is now processed
            v2.iter().skip(i2).for_each(|&v| resvec.push(v)); // copy out the rest of v2
            break; // and terminate
        }
        if i2 == l2 {
            // v2 is now processed
            self.iter().skip(i1).for_each(|&v| resvec.push(v)); // copy out the rest of v1
            break; // and terminate
        }
        if self[i1] < v2[i2] {
            resvec.push(self[i1]);
            i1 += 1;
            continue;
        };
        if self[i1] > v2[i2] {
            resvec.push(v2[i2]);
            i2 += 1;
            continue;
        };
        // here they are equal, so consume both
        resvec.push(self[i1]);
        i1 += 1;
        resvec.push(v2[i2]);
        i2 += 1
    }
    resvec
}

/// Merges two ascending sort indices.
/// Data is not shuffled at all, v2 is just concatenated onto v1
/// in one go and both remain in their original order.
/// Returns the concatenated vector and a new valid sort index into it.
fn merge_indexed(self, idx1: &[usize], v2: &[T], idx2: &[usize]) -> (Vec<T>, Vec<usize>)
    where T: PartialOrd+Copy {
    let res = [self, v2].concat(); // no individual shuffling, just one concatenation
    let l = idx1.len();
    // shift up all items in idx2 by length of indx1, so that they will
    // refer correctly to the second part of the concatenated vector
    let idx2shifted: Vec<usize> = idx2.iter().map(|x| l + x).collect();
    // now merge the indices
    let residx = res.merge_indices(idx1, &idx2shifted);
    (res, residx)
}

/// Merges the sort indices of two concatenated vectors.
/// Data in s is not changed at all, only consulted for the comparisons.
/// This function is used by  `mergesort` and `merge_indexed`.
fn merge_indices(self, idx1: &[usize], idx2: &[usize]) -> Vec<usize>
    where T: PartialOrd+Copy {
    let l1 = idx1.len();
    let l2 = idx2.len();
    let mut residx: Vec<usize> = Vec::with_capacity(l1 + l2);
    let mut i1 = 0;
    let mut i2 = 0;
    let mut head1 = self[idx1[i1]];
    let mut head2 = self[idx2[i2]];
    loop {
        if head1 < head2 {
            residx.push(idx1[i1]);
            i1 += 1;
            if i1 == l1 {
                // idx1 is now fully processed
                idx2.iter().skip(i2).for_each(|&v| residx.push(v)); // copy out the rest of idx2
                break; // and terminate
            }
            head1 = self[idx1[i1]]; // else move to the next idx1 value
            continue;
        }
        if head1 > head2 {
            residx.push(idx2[i2]);
            i2 += 1;
            if i2 == l2 {
                // idx2 is now processed
                idx1.iter().skip(i1).for_each(|&v| residx.push(v)); // copy out the rest of idx1
                break; // and terminate
            }
            head2 = self[idx2[i2]]; // else move to the next idx2 value
            continue;
        }
        // here the heads are equal, so consume both
        residx.push(idx1[i1]);
        i1 += 1;
        if i1 == l1 {
            // idx1 is now fully processed
            idx2.iter().skip(i2).for_each(|&v| residx.push(v)); // copy out the rest of idx2
            break; // and terminate
        }
        head1 = self[idx1[i1]];
        residx.push(idx2[i2]);
        i2 += 1;
        if i2 == l2 {
            // idx2 is now processed
            idx1.iter().skip(i1).for_each(|&v| residx.push(v)); // copy out the rest of idx1
            break; // and terminate
        }
        head2 = self[idx2[i2]];
    }
    residx
}

/// Doubly recursive non-destructive merge sort.
/// The data is not moved or mutated.
/// Efficiency is comparable to quicksort but more stable
/// Returns a vector of indices to s from i to i+n,
/// such that the indexed values are in ascending sort order (a sort index).
/// Only the index values are being moved.
fn mergesortslice(self, i: usize, n: usize) -> Vec<usize>
    where T: PartialOrd+Copy {
    if n == 1 {
        let res = vec![i];
        return res;
    }; // recursion termination
    if n == 2 {
        // also terminate with two sorted items (for efficiency)
        if self[i + 1] < self[i] {
            return vec![i + 1, i];
        } else {
            return vec![i, i + 1];
        }
    }
    let n1 = n / 2; // the first part (the parts do not have to be the same)
    let n2 = n - n1; // the remaining second part
    let sv1 = self.mergesortslice(i, n1); // recursively sort the first half
    let sv2 = self.mergesortslice(i + n1, n2); // recursively sort the second half
    // Now merge the two sorted indices into one and return it
    self.merge_indices(&sv1, &sv2)
}

/// The main mergesort
/// Wraps mergesortslice, to obtain the whole sort index
fn mergesort_indexed(self) -> Vec<usize> where T:PartialOrd+Copy {
    self.mergesortslice(0, self.len())
}

/// Immutable merge sort. Returns new sorted data vector (ascending or descending).
/// Wraps mergesortslice. 
/// Mergesortslice and mergesort_indexed produce only an ascending index.
/// Sortm will produce descending data order with ascending == false.
fn sortm(self, ascending: bool) -> Vec<T> where T: PartialOrd+Copy {
    if self.len() < 120 {  // use default Rust sort for short Vecs
        let mut sorted = self.to_vec();
        sorted.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap()); 
        sorted
    } else { 
    self
        .mergesortslice(0, self.len())
        .unindex(self, ascending)
    }
}

/// Fast ranking of many T items, with only `n*(log(n)+1)` complexity.
/// Ranking is done by inverting the sort index.
/// Sort index is in sorted order, giving data positions.
/// Ranking is in data order, giving sorted order positions.
/// Thus sort index and ranks are in an inverse relationship.
/// They are easily converted by `.invindex()` (for: invert index).
fn rank(self, ascending: bool) -> Vec<usize> where T: PartialOrd+Copy {
    let n = self.len();
    let sortindex = self.mergesortslice(0, n);
    let mut rankvec: Vec<usize> = vec![0; n];
    if ascending {
        for (i, &sortpos) in sortindex.iter().enumerate() {
            rankvec[sortpos] = i
        }
    } else {
        // rank in the order of descending values
        for (i, &sortpos) in sortindex.iter().enumerate() {
            rankvec[sortpos] = n - i - 1
        }
    }
    rankvec
}

/// swap any two index items, if their data items (self) are not in ascending order
fn isorttwo(self,  idx: &mut[usize], i0: usize, i1: usize) -> bool where T:PartialOrd { 
    if self[idx[i0]] > self[idx[i1]] { idx.swap(i0,i1); true }
    else { false }
}

/// sort three index items if their self items are out of ascending order
fn isortthree(self, idx: &mut[usize], i0: usize, i1:usize, i2:usize) where T: PartialOrd { 
        self.isorttwo(idx,i0,i1);
        if self.isorttwo(idx,i1,i2) 
            { self.isorttwo(idx,i0,i1); };   
    }

/// N recursive non-destructive hash sort.
/// Input data are read only. Output is sort index.
/// Requires min,max, the data range, that must enclose all its values. 
/// The range is often known. If not, it can be obtained with `minmaxt()`.
fn hashsort_indexed(self) -> Vec<usize> 
    where T: PartialOrd+Copy, F64:From<T> { 
    let n = self.len();
    let (min,max) = self.minmaxt();
    // create a mutable index for the result
    let mut idx = Vec::from_iter(0..n); 
    self.hashsortslice(&mut idx,0,n,min,max); // sorts idx
    idx 
}   

fn hashsortslice(self, idx: &mut[usize], i: usize, n: usize, min:T, max:T) 
    where T: PartialOrd+Copy, F64:From<T> { 
    // Recursion termination conditions
    match n {
        0 => { return; }, // nothing to do
        1 => { idx[i] = i; return; }, // enter one item, no sorting
        2 => { self.isorttwo(idx, i, i+1); return; },
        3 => { self.isortthree(idx, i,i+1,i+2); return; },
        _ => () // carry on below
    };      
    let fmin = inf64(min);
    let fmax = inf64(max); 
    // hash is a constant s.t. (x-min)*hash is in [0,n] 
    let hash = (n as f64) / (fmax-fmin);  
    let mut buckets:Vec<Vec<usize>> = vec![Vec::new();n];
    // group current index items into buckets by their associated self[] values
    for &xi in idx.iter().skip(i).take(n) {  
        let mut hashsub = (hash*(inf64(self[xi])-fmin)).floor() as usize; 
        if hashsub == n { hashsub -=1 }; // reduce subscripts to [0,n-1] 
        buckets[hashsub].push(xi);
    }
    // sort the buckets into the index list 
    let mut isub = i; 
    for bucket in buckets.iter() { 
        let blen = bucket.len(); 
        // println!("hashsortslice bucket start: {} items: {}",isub,blen);   
        match blen {
        0 => continue, // empty bucket
        1 => { idx[isub] = bucket[0]; isub += 1; }, // copy the item to the main index
        2 => { 
            idx[isub] = bucket[0]; idx[isub+1] = bucket[1];
            self.isorttwo(idx, isub, isub+1);
            isub += 2; 
        },
        3 => {
            idx[isub] = bucket[0]; idx[isub+1] = bucket[1]; idx[isub+2] = bucket[2];   
            self.isortthree(idx,isub,isub+1,isub+2); 
            isub += 3;
        },
        x if x == n => { 
            // this bucket alone is populated, 
            // items in it are most likely all equal
            let mx = self.minmax_indexed(idx, isub, blen);
            if mx.min < mx.max { // recurse with the new range 
                self.isorttwo(idx,isub,mx.minindex); // swap minindex to the front 
                self.isorttwo(idx,mx.maxindex,isub+n-1); // swap maxindex to the end 
                // recurse to sort the rest
                self.hashsortslice(idx,i+1,blen-2,mx.min,mx.max); 
            };
            return; // all items were equal, or are now sorted
        },
        _ => { 
            // copy to the index the grouped unsorted items from bucket
            let isubprev = isub;
            for &item in bucket { idx[isub] = item; isub += 1; }; 
            let mx = self.minmax_indexed( idx, isubprev, blen);
            if mx.min < mx.max { // else are all equal
                self.isorttwo(idx,isubprev,mx.minindex); // swap minindex to the front 
                self.isorttwo(idx,mx.maxindex,isub-1); // swap maxindex to the end  
                // recurse to sort the rest
                self.hashsortslice(idx,isubprev+1,blen-2,mx.min,mx.max); 
                };
            } 
        }
    }
}

/// Immutable hash sort. Returns new sorted data vector (ascending or descending).
/// Wraps mergesortslice. 
/// Mergesortslice and mergesort_indexed produce only an ascending index.
/// Sortm will produce descending data order with ascending == false.
fn sorth(self, ascending: bool) -> Vec<T> 
    where T: PartialOrd+Copy,F64:From<T> {
    let mut sorted = self.to_vec(); 
    sorted.muthashsort();
    if !ascending { sorted.mutrevs() };
    sorted 
}

}