1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//! Iterators.

use crate::{Arena, Node, NodeId};

macro_rules! impl_node_iterator {
    ($name:ident, $next:expr) => {
        impl<'a, T> Iterator for $name<'a, T> {
            type Item = NodeId;

            fn next(&mut self) -> Option<NodeId> {
                let node = self.node.take()?;
                self.node = $next(&self.arena[node]);
                Some(node)
            }
        }
    };
}

#[derive(Clone)]
/// An iterator of the IDs of the ancestors a given node.
pub struct Ancestors<'a, T> {
    arena: &'a Arena<T>,
    node: Option<NodeId>,
}
impl_node_iterator!(Ancestors, |node: &Node<T>| node.parent);

impl<'a, T> Ancestors<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            node: Some(current),
        }
    }
}

#[derive(Clone)]
/// An iterator of the IDs of the siblings before a given node.
pub struct PrecedingSiblings<'a, T> {
    arena: &'a Arena<T>,
    node: Option<NodeId>,
}
impl_node_iterator!(PrecedingSiblings, |node: &Node<T>| node.previous_sibling);

impl<'a, T> PrecedingSiblings<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            node: Some(current),
        }
    }
}

#[derive(Clone)]
/// An iterator of the IDs of the siblings after a given node.
pub struct FollowingSiblings<'a, T> {
    arena: &'a Arena<T>,
    node: Option<NodeId>,
}
impl_node_iterator!(FollowingSiblings, |node: &Node<T>| node.next_sibling);

impl<'a, T> FollowingSiblings<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            node: Some(current),
        }
    }
}

#[derive(Clone)]
/// An iterator of the IDs of the children of a given node, in insertion order.
pub struct Children<'a, T> {
    arena: &'a Arena<T>,
    node: Option<NodeId>,
}
impl_node_iterator!(Children, |node: &Node<T>| node.next_sibling);

impl<'a, T> Children<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            node: arena[current].first_child,
        }
    }
}

#[derive(Clone)]
/// An iterator of the IDs of the children of a given node, in reverse insertion order.
pub struct ReverseChildren<'a, T> {
    arena: &'a Arena<T>,
    node: Option<NodeId>,
}
impl_node_iterator!(ReverseChildren, |node: &Node<T>| node.previous_sibling);

impl<'a, T> ReverseChildren<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            node: arena[current].last_child,
        }
    }
}

#[derive(Clone)]
/// An iterator of the IDs of a given node and its descendants, as a pre-order depth-first search where children are visited in insertion order.
///
/// i.e. node -> first child -> second child
pub struct Descendants<'a, T>(Traverse<'a, T>);

impl<'a, T> Descendants<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self(Traverse::new(arena, current))
    }
}

impl<'a, T> Iterator for Descendants<'a, T> {
    type Item = NodeId;

    fn next(&mut self) -> Option<NodeId> {
        self.0.find_map(|edge| match edge {
            NodeEdge::Start(node) => Some(node),
            NodeEdge::End(_) => None,
        })
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
/// Indicator if the node is at a start or endpoint of the tree
pub enum NodeEdge {
    /// Indicates that start of a node that has children.
    ///
    /// Yielded by `Traverse::next()` before the node’s descendants. In HTML or
    /// XML, this corresponds to an opening tag like `<div>`.
    Start(NodeId),

    /// Indicates that end of a node that has children.
    ///
    /// Yielded by `Traverse::next()` after the node’s descendants. In HTML or
    /// XML, this corresponds to a closing tag like `</div>`
    End(NodeId),
}

#[derive(Clone)]
/// An iterator of the "sides" of a node visited during a depth-first pre-order traversal,
/// where node sides are visited start to end and children are visited in insertion order.
///
/// i.e. node.start -> first child -> second child -> node.end
pub struct Traverse<'a, T> {
    arena: &'a Arena<T>,
    root: NodeId,
    next: Option<NodeEdge>,
}

impl<'a, T> Traverse<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            root: current,
            next: Some(NodeEdge::Start(current)),
        }
    }

    /// Calculates the next node.
    fn next_of_next(&self, next: NodeEdge) -> Option<NodeEdge> {
        match next {
            NodeEdge::Start(node) => match self.arena[node].first_child {
                Some(first_child) => Some(NodeEdge::Start(first_child)),
                None => Some(NodeEdge::End(node)),
            },
            NodeEdge::End(node) => {
                if node == self.root {
                    return None;
                }
                let node = &self.arena[node];
                match node.next_sibling {
                    Some(next_sibling) => Some(NodeEdge::Start(next_sibling)),
                    // `node.parent()` here can only be `None` if the tree has
                    // been modified during iteration, but silently stoping
                    // iteration seems a more sensible behavior than panicking.
                    None => node.parent.map(NodeEdge::End),
                }
            }
        }
    }
}

impl<'a, T> Iterator for Traverse<'a, T> {
    type Item = NodeEdge;

    fn next(&mut self) -> Option<NodeEdge> {
        let next = self.next.take()?;
        self.next = self.next_of_next(next);
        Some(next)
    }
}

#[derive(Clone)]
/// An iterator of the "sides" of a node visited during a depth-first pre-order traversal,
/// where nodes are visited end to start and children are visited in reverse insertion order.
///
/// i.e. node.end -> second child -> first child -> node.start
pub struct ReverseTraverse<'a, T> {
    arena: &'a Arena<T>,
    root: NodeId,
    next: Option<NodeEdge>,
}

impl<'a, T> ReverseTraverse<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            root: current,
            next: Some(NodeEdge::End(current)),
        }
    }

    /// Calculates the next node.
    fn next_of_next(&self, next: NodeEdge) -> Option<NodeEdge> {
        match next {
            NodeEdge::End(node) => match self.arena[node].last_child {
                Some(last_child) => Some(NodeEdge::End(last_child)),
                None => Some(NodeEdge::Start(node)),
            },
            NodeEdge::Start(node) => {
                if node == self.root {
                    return None;
                }
                let node = &self.arena[node];
                match node.previous_sibling {
                    Some(previous_sibling) => Some(NodeEdge::End(previous_sibling)),
                    // `node.parent()` here can only be `None` if the tree has
                    // been modified during iteration, but silently stoping
                    // iteration seems a more sensible behavior than panicking.
                    None => node.parent.map(NodeEdge::Start),
                }
            }
        }
    }
}

impl<'a, T> Iterator for ReverseTraverse<'a, T> {
    type Item = NodeEdge;

    fn next(&mut self) -> Option<NodeEdge> {
        let next = self.next.take()?;
        self.next = self.next_of_next(next);
        Some(next)
    }
}