1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
//! This crate helps with defining "newtype"-style wrappers around `usize` (or
//! other integers), `Vec<T>`, and `[T]` so that some additional type safety can
//! be gained at zero cost.
//!
//! ## Example / Overview
//! ```rust
//! use index_vec::{IndexVec, IndexSlice, index_vec};
//!
//! index_vec::define_index_type! {
//!     // Define StrIdx to use only 32 bits internally (you can use usize, u16,
//!     // and even u8).
//!     pub struct StrIdx = u32;
//!
//!     // The defaults are very reasonable, but this macro can let
//!     // you customize things quite a bit:
//!
//!     // By default, creating a StrIdx would check an incoming `usize against
//!     // `u32::max_value()`, as u32 is the wrapped index type. Lets imagine that
//!     // StrIdx has to interface with an external system that uses signed ints.
//!     // We can change the checking behavior to complain on i32::max_value()
//!     // instead:
//!     MAX_INDEX = i32::max_value() as usize;
//!
//!     // We can also disable checking all-together if we are more concerned with perf
//!     // than any overflow problems, or even do so, but only for debug builds: Quite
//!     // pointless here, but an okay example
//!     DISABLE_MAX_INDEX_CHECK = cfg!(not(debug_assertions));
//!
//!     // And more too, see this macro's docs for more info.
//! }
//!
//! // Create a vector which can be accessed using `StrIdx`s.
//! let mut strs: IndexVec<StrIdx, &'static str> = index_vec!["strs", "bar", "baz"];
//!
//! // l is a `StrIdx`
//! let l = strs.last_idx();
//! assert_eq!(strs[l], "baz");
//!
//! let new_i = strs.push("quux");
//! assert_eq!(strs[new_i], "quux");
//!
//! // The slice APIs are wrapped as well.
//! let s: &IndexSlice<StrIdx, [&'static str]> = &strs[StrIdx::new(1)..];
//! assert_eq!(s[0], "bar");
//!
//! // Indices are mostly interoperable with `usize`, and support
//! // a lot of what you might want to do to an index.
//!
//! // Comparison
//! assert_eq!(StrIdx::new(0), 0usize);
//!
//! // Addition
//! assert_eq!(StrIdx::new(0) + 1, 1usize);
//!
//! // Subtraction
//! assert_eq!(StrIdx::new(1) - 1, 0usize);
//!
//! // Wrapping
//! assert_eq!(StrIdx::new(5) % strs.len(), 1usize);
//! // ...
//! ```
//! ## Background
//!
//! The goal is to help with the pattern of using a `type FooIdx = usize` to
//! access a `Vec<Foo>` with something that can statically prevent using a
//! `FooIdx` in a `Vec<Bar>`. It's most useful if you have a bunch of indices
//! referring to different sorts of vectors.
//!
//! The code was originally based on `rustc`'s `IndexVec` code, however that has
//! been almost entirely rewritten (except for the cases where it's trivial,
//! e.g. the Vec wrapper).
//!
//! ## Other crates
//!
//! The [`indexed_vec`](https://crates.io/crates/indexed_vec) crate predates
//! this, and is a much closer copy of the code from `rustc`. Unfortunately,
//! this means it does not compile on stable.
//!
//! If you're looking for something further from a vec and closer to a map, you
//! might find [`handy`](https://crates.io/crates/handy),
//! [`slotmap`](https://crates.io/crates/slotmap), or
//! [`slab`](https://crates.io/crates/slab) to be closer what you want.
//!
//! ## FAQ
//!
//! #### Wouldn't `define_index_type` be better as a proc macro?
//!
//! Probably. It's not a proc macro because I tend to avoid them where possible
//! due to wanting to minimize compile times. If the issues around proc-macro
//! compile times are fixed, then I'll revisit this.
//!
//! I also may eventually add a proc-macro feature which is not required, but
//! avoids some of the grossness.
//!
//! #### Does `define_index_type` do too much?
//!
//! Possibly. It defines a type, implements a bunch of functions on it, and
//! quite a few traits. That said, it's intended to be a very painless journey
//! from `Vec<T>` + `usize` to `IndexVec<I, T>`. If it left it up to the
//! developer to do those things, it would be too annoying to be worth using.
//!
//! #### The syntax for the options in `define_index_type` is terrible.
//!
//! I'm open to suggestions.
//!
//! #### Does it support no_std?
//!
//! Yes, although it uses `extern crate alloc;`, of course.
//!
//! #### Does it support serde?
//!
//! Yes, but only if you turn on the `serde` feature.
//!
//! #### What features are planned?
//!
//! Planned is a bit strong but here are the things I would find useful.
//!
//! - Support any remaining parts of the slice/vec api.
//! - Add typesafe wrappers for SmallVec/ArrayVec (behind a cargo `feature`, of
//!   course).
//! - Better syntax for the define_index_type macro (no concrete ideas).
//! - Allow the generated type to be a tuple struct, or use a specific field
//!   name.
//! - Allow use of indices for string types (the primary benefit here would
//!   probably be the ability to e.g. use u32 without too much pain rather than
//!   mixing up indices from different strings -- but you never know!)
//! - Allow index types such as NonZeroU32 and such, if it can be done sanely.
//! - ...
//!
#![allow(clippy::partialeq_ne_impl)]
#![no_std]
extern crate alloc;

use alloc::borrow::{Cow, ToOwned};
use alloc::boxed::Box;
use alloc::vec;
use alloc::vec::Vec;
use core::borrow::{Borrow, BorrowMut};
use core::fmt;
use core::fmt::Debug;
use core::hash::Hash;
use core::iter::{self, FromIterator};
use core::marker::PhantomData;
use core::ops::Range;
use core::slice;
mod idxslice;
mod indexing;
pub use idxslice::{IndexBox, IndexSlice};
pub use indexing::{IdxRangeBounds, IdxSliceIndex};

#[macro_use]
mod macros;
pub use macros::*;

#[cfg(any(test, feature = "example_generated"))]
pub mod example_generated;

/// Represents a wrapped value convertable to and from a `usize`.
///
/// Generally you implement this via the [`define_index_type!`] macro, rather
/// than manually implementing it.
///
/// # Overflow
///
/// `Idx` impls are allowed to be smaller than `usize`, which means converting
/// `usize` to an `Idx` implementation might have to handle overflow.
///
/// The way overflow is handled is up to the implementation of `Idx`, but it's
/// generally panicing, unless it was turned off via the
/// `DISABLE_MAX_INDEX_CHECK` option in [`define_index_type!`]. If you need more
/// subtle handling than this, then you're on your own (or, well, either handle
/// it earlier, or pick a bigger index type).
///
/// Note: I'm open for suggestions on how to handle this case, but do not want
/// the typical cases (E.g. Idx is a newtyped usize or u32), to become more
/// complex.
pub trait Idx: Copy + 'static + Ord + Debug + Hash {
    /// Construct an Index from a usize. This is equivalent to From<usize>.
    ///
    /// Note that this will panic if `idx` does not fit (unless checking has
    /// been disabled, as mentioned above). Also note that `Idx` implementations
    /// are free to define what "fit" means as they desire.
    fn from_usize(idx: usize) -> Self;

    /// Get the underlying index. This is equivalent to Into<usize>
    fn index(self) -> usize;
}

/// A macro equivalent to the stdlib's `vec![]`, but producing an `IndexVec`.
#[macro_export]
macro_rules! index_vec {
    ($($tokens:tt)*) => {
        $crate::IndexVec::from_vec(vec![$($tokens)*])
    }
}

/// A macro similar to the stdlib's `vec![]`, but producing an
/// `Box<IndexSlice<I, [T]>>` (That is, an `IndexBox<I, [T]>`).
#[macro_export]
macro_rules! index_box {
    ($($tokens:tt)*) => {
        $crate::IndexVec::from_vec(vec![$($tokens)*]).into_boxed_slice()
    }
}

/// A Vec that only accepts indices of a specific type.
///
/// This is a thin wrapper around `Vec`, to the point where the backing vec is a
/// public property (called `raw`). This is in part because I know this API is
/// not a complete mirror of Vec's (patches welcome). In the worst case, you can
/// always do what you need to the Vec itself.
///
/// Note that this implements Deref/DerefMut to [`IndexSlice`], and so all the
/// methods on IndexSlice are available as well. See it's documentation for some
/// further information.
///
/// The following extensions to the Vec APIs are added (in addition to the ones
/// mentioned in IndexSlice's documentation):
///
/// - [`IndexVec::next_idx`], [`IndexSlice::last_idx`] give the next and most
///   recent index returned by `push`.
/// - [`IndexVec::push`] returns the index the item was inserted at.
#[derive(PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct IndexVec<I: Idx, T> {
    /// Our wrapped Vec.
    pub raw: Vec<T>,
    _marker: PhantomData<fn(&I)>,
}

// Whether `IndexVec` is `Send` depends only on the data,
// not the phantom data.
unsafe impl<I: Idx, T> Send for IndexVec<I, T> where T: Send {}

impl<I: Idx, T: fmt::Debug> fmt::Debug for IndexVec<I, T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&self.raw, fmt)
    }
}
type Enumerated<Iter, I, T> = iter::Map<iter::Enumerate<Iter>, fn((usize, T)) -> (I, T)>;

impl<I: Idx, T> IndexVec<I, T> {
    /// Construct a new IndexVec.
    #[inline]
    pub fn new() -> Self {
        IndexVec {
            raw: Vec::new(),
            _marker: PhantomData,
        }
    }

    /// Construct a `IndexVec` from a `Vec<T>`.
    ///
    /// Panics if it's length is too large for our index type.
    #[inline]
    pub fn from_vec(vec: Vec<T>) -> Self {
        // See if `I::from_usize` might be upset by this length.
        let _ = I::from_usize(vec.len());
        IndexVec {
            raw: vec,
            _marker: PhantomData,
        }
    }

    /// Construct an IndexVec that can hold at least `capacity` items before
    /// reallocating. See [`Vec::with_capacity`].
    #[inline]
    pub fn with_capacity(capacity: usize) -> Self {
        IndexVec {
            raw: Vec::with_capacity(capacity),
            _marker: PhantomData,
        }
    }

    /// Similar to `self.into_iter().enumerate()` but with indices of `I` and
    /// not `usize`.
    #[inline(always)]
    pub fn into_iter_enumerated(self) -> Enumerated<vec::IntoIter<T>, I, T> {
        self.raw
            .into_iter()
            .enumerate()
            .map(|(i, t)| (I::from_usize(i), t))
    }

    /// Creates a splicing iterator that replaces the specified range in the
    /// vector with the given `replace_with` iterator and yields the removed
    /// items. See [`Vec::splice`]
    #[inline]
    pub fn splice<R, It>(
        &mut self,
        range: R,
        replace_with: It,
    ) -> vec::Splice<<It as IntoIterator>::IntoIter>
    where
        It: IntoIterator<Item = T>,
        R: IdxRangeBounds<I>,
    {
        self.raw.splice(range.into_range(), replace_with)
    }

    /// Similar to `self.drain(r).enumerate()` but with indices of `I` and not
    /// `usize`.
    #[inline]
    pub fn drain_enumerated<R: IdxRangeBounds<I>>(
        &mut self,
        range: R,
    ) -> Enumerated<vec::Drain<'_, T>, I, T> {
        self.raw
            .drain(range.into_range())
            .enumerate()
            .map(|(i, t)| (I::from_usize(i), t))
    }

    /// Gives the next index that will be assigned when `push` is
    /// called.
    #[inline]
    pub fn next_idx(&self) -> I {
        I::from_usize(self.len())
    }

    /// Get a the storage as a `&[T]`
    #[inline(always)]
    pub fn as_raw_slice(&self) -> &[T] {
        &self.raw
    }

    /// Get a the storage as a `&mut [T]`
    #[inline(always)]
    pub fn as_raw_slice_mut(&mut self) -> &mut [T] {
        &mut self.raw
    }

    /// Equivalent to accessing our `raw` field, but as a function.
    #[inline(always)]
    pub fn as_vec(&self) -> &Vec<T> {
        &self.raw
    }

    /// Equivalent to accessing our `raw` field mutably, but as a function, if
    /// that's what you'd prefer.
    #[inline(always)]
    pub fn as_mut_vec(&mut self) -> &mut Vec<T> {
        &mut self.raw
    }

    /// Push a new item onto the vector, and return it's index.
    #[inline]
    pub fn push(&mut self, d: T) -> I {
        let idx = I::from_usize(self.len());
        self.raw.push(d);
        idx
    }

    /// Pops the last item off, returning it. See [`Vec::pop`].
    #[inline]
    pub fn pop(&mut self) -> Option<T> {
        self.raw.pop()
    }

    /// Converts the vector into an owned IdxSlice, dropping excess capacity.
    #[inline]
    pub fn into_boxed_slice(self) -> alloc::boxed::Box<IndexSlice<I, [T]>> {
        let b = self.raw.into_boxed_slice();
        unsafe { Box::from_raw(Box::into_raw(b) as *mut IndexSlice<I, [T]>) }
    }

    /// Return an iterator that removes the items from the requested range. See
    /// [`Vec::drain`].
    ///
    /// See also [`IndexVec::drain_enumerated`], which gives you indices (of the
    /// correct type) as you iterate.
    #[inline]
    pub fn drain<R: IdxRangeBounds<I>>(&mut self, range: R) -> vec::Drain<'_, T> {
        self.raw.drain(range.into_range())
    }

    /// Shrinks the capacity of the vector as much as possible.
    #[inline]
    pub fn shrink_to_fit(&mut self) {
        self.raw.shrink_to_fit()
    }

    /// Shortens the vector, keeping the first `len` elements and dropping
    /// the rest. See [`Vec::truncate`]
    #[inline]
    pub fn truncate(&mut self, a: usize) {
        self.raw.truncate(a)
    }

    /// Clear our vector. See [`Vec::clear`].
    #[inline]
    pub fn clear(&mut self) {
        self.raw.clear()
    }

    /// Reserve capacity for `c` more elements. See [`Vec::reserve`]
    #[inline]
    pub fn reserve(&mut self, c: usize) {
        self.raw.reserve(c)
    }

    /// Get a ref to the item at the provided index, or None for out of bounds.
    #[inline]
    pub fn get<J: IdxSliceIndex<I, T>>(&self, index: J) -> Option<&J::Output> {
        index.get(self.as_slice())
    }

    /// Get a mut ref to the item at the provided index, or None for out of
    /// bounds
    #[inline]
    pub fn get_mut<J: IdxSliceIndex<I, T>>(&mut self, index: J) -> Option<&mut J::Output> {
        index.get_mut(self.as_mut_slice())
    }

    /// Resize ourselves in-place to `new_len`. See [`Vec::resize`].
    #[inline]
    pub fn resize(&mut self, new_len: usize, value: T)
    where
        T: Clone,
    {
        self.raw.resize(new_len, value)
    }

    /// Resize ourselves in-place to `new_len`. See [`Vec::resize_with`].
    #[inline]
    pub fn resize_with<F: FnMut() -> T>(&mut self, new_len: usize, f: F) {
        self.raw.resize_with(new_len, f)
    }

    /// Moves all the elements of `other` into `Self`, leaving `other` empty.
    /// See [`Vec::append`].
    #[inline]
    pub fn append(&mut self, other: &mut Self) {
        self.raw.append(&mut other.raw)
    }

    /// Splits the collection into two at the given index. See
    /// [`Vec::split_off`].
    #[inline]
    pub fn split_off(&mut self, idx: I) -> Self {
        Self::from_vec(self.raw.split_off(idx.index()))
    }

    /// Remove the item at `index`. See [`Vec::remove`].
    #[inline]
    pub fn remove(&mut self, index: I) -> T {
        self.raw.remove(index.index())
    }

    /// Remove the item at `index` without maintaining order. See
    /// [`Vec::swap_remove`].
    #[inline]
    pub fn swap_remove(&mut self, index: I) -> T {
        self.raw.swap_remove(index.index())
    }

    /// Insert an item at `index`. See [`Vec::insert`].
    #[inline]
    pub fn insert(&mut self, index: I, element: T) {
        self.raw.insert(index.index(), element)
    }

    /// Append all items in the slice to the end of our vector.
    ///
    /// See [`Vec::extend_from_slice`].
    #[inline]
    pub fn extend_from_slice(&mut self, other: &IndexSlice<I, [T]>)
    where
        T: Clone,
    {
        self.raw.extend_from_slice(&other.raw)
    }

    /// Forwards to the `Vec::retain` implementation.
    #[inline]
    pub fn retain<F: FnMut(&T) -> bool>(&mut self, f: F) {
        self.raw.retain(f)
    }

    /// Forwards to the `Vec::dedup_by_key` implementation.
    #[inline]
    pub fn dedup_by_key<F: FnMut(&mut T) -> K, K: PartialEq>(&mut self, key: F) {
        self.raw.dedup_by_key(key)
    }

    /// Forwards to the `Vec::dedup` implementation.
    #[inline]
    pub fn dedup(&mut self)
    where
        T: PartialEq,
    {
        self.raw.dedup()
    }

    /// Forwards to the `Vec::dedup_by` implementation.
    #[inline]
    pub fn dedup_by<F: FnMut(&mut T, &mut T) -> bool>(&mut self, same_bucket: F) {
        self.raw.dedup_by(same_bucket)
    }

    /// Get a IndexSlice over this vector. See `as_raw_slice` for converting to
    /// a `&[T]` (or access `self.raw`).
    #[inline(always)]
    pub fn as_slice(&self) -> &IndexSlice<I, [T]> {
        IndexSlice::new(&self.raw)
    }

    /// Get a mutable IndexSlice over this vector. See `as_raw_slice_mut` for
    /// converting to a `&mut [T]` (or access `self.raw`).
    #[inline(always)]
    pub fn as_mut_slice(&mut self) -> &mut IndexSlice<I, [T]> {
        IndexSlice::new_mut(&mut self.raw)
    }
}

impl<I: Idx, T> Default for IndexVec<I, T> {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl<I: Idx, T> Extend<T> for IndexVec<I, T> {
    #[inline]
    fn extend<J: IntoIterator<Item = T>>(&mut self, iter: J) {
        self.raw.extend(iter);
    }
}

impl<'a, I: Idx, T: 'a + Copy> Extend<&'a T> for IndexVec<I, T> {
    #[inline]
    fn extend<J: IntoIterator<Item = &'a T>>(&mut self, iter: J) {
        self.raw.extend(iter);
    }
}

impl<I: Idx, T> FromIterator<T> for IndexVec<I, T> {
    #[inline]
    fn from_iter<J>(iter: J) -> Self
    where
        J: IntoIterator<Item = T>,
    {
        IndexVec {
            raw: FromIterator::from_iter(iter),
            _marker: PhantomData,
        }
    }
}

impl<I: Idx, T> IntoIterator for IndexVec<I, T> {
    type Item = T;
    type IntoIter = vec::IntoIter<T>;

    #[inline]
    fn into_iter(self) -> vec::IntoIter<T> {
        self.raw.into_iter()
    }
}

impl<'a, I: Idx, T> IntoIterator for &'a IndexVec<I, T> {
    type Item = &'a T;
    type IntoIter = slice::Iter<'a, T>;

    #[inline]
    fn into_iter(self) -> slice::Iter<'a, T> {
        self.raw.iter()
    }
}

impl<'a, I: Idx, T> IntoIterator for &'a mut IndexVec<I, T> {
    type Item = &'a mut T;
    type IntoIter = slice::IterMut<'a, T>;

    #[inline]
    fn into_iter(self) -> slice::IterMut<'a, T> {
        self.raw.iter_mut()
    }
}

impl<I: Idx, T> From<IndexVec<I, T>> for Box<IndexSlice<I, [T]>> {
    #[inline]
    fn from(src: IndexVec<I, T>) -> Self {
        src.into_boxed_slice()
    }
}

impl<I: Idx, T> From<Box<IndexSlice<I, [T]>>> for IndexVec<I, T> {
    #[inline]
    fn from(src: Box<IndexSlice<I, [T]>>) -> Self {
        src.into_vec()
    }
}

impl<'a, I: Idx, T> From<Cow<'a, IndexSlice<I, [T]>>> for IndexVec<I, T>
where
    IndexSlice<I, [T]>: ToOwned<Owned = IndexVec<I, T>>,
{
    #[inline]
    fn from(s: Cow<'a, IndexSlice<I, [T]>>) -> IndexVec<I, T> {
        s.into_owned()
    }
}

impl<'a, I: Idx, T: Clone> From<&'a IndexSlice<I, [T]>> for IndexVec<I, T> {
    #[inline]
    fn from(src: &'a IndexSlice<I, [T]>) -> Self {
        src.to_owned()
    }
}
impl<'a, I: Idx, T: Clone> From<&'a mut IndexSlice<I, [T]>> for IndexVec<I, T> {
    #[inline]
    fn from(src: &'a mut IndexSlice<I, [T]>) -> Self {
        src.to_owned()
    }
}

impl<I: Idx, T> From<Vec<T>> for IndexVec<I, T> {
    #[inline]
    fn from(v: Vec<T>) -> Self {
        Self {
            raw: v,
            _marker: PhantomData,
        }
    }
}

impl<I: Idx, T: Clone> Clone for IndexVec<I, T> {
    #[inline]
    fn clone(&self) -> Self {
        Self {
            raw: self.raw.clone(),
            _marker: PhantomData,
        }
    }
    #[inline]
    fn clone_from(&mut self, o: &Self) {
        self.raw.clone_from(&o.raw);
    }
}

impl<I: Idx, A> AsRef<[A]> for IndexVec<I, A> {
    #[inline]
    fn as_ref(&self) -> &[A] {
        &self.raw
    }
}

impl<I: Idx, A> AsMut<[A]> for IndexVec<I, A> {
    #[inline]
    fn as_mut(&mut self) -> &mut [A] {
        &mut self.raw
    }
}

impl<I: Idx, A> AsRef<IndexSlice<I, [A]>> for IndexVec<I, A> {
    #[inline]
    fn as_ref(&self) -> &IndexSlice<I, [A]> {
        IndexSlice::new(&self.raw)
    }
}

impl<I: Idx, A> AsMut<IndexSlice<I, [A]>> for IndexVec<I, A> {
    #[inline]
    fn as_mut(&mut self) -> &mut IndexSlice<I, [A]> {
        IndexSlice::new_mut(&mut self.raw)
    }
}

impl<I: Idx, A> core::ops::Deref for IndexVec<I, A> {
    type Target = IndexSlice<I, [A]>;
    #[inline]
    fn deref(&self) -> &IndexSlice<I, [A]> {
        IndexSlice::new(&self.raw)
    }
}

impl<I: Idx, A> core::ops::DerefMut for IndexVec<I, A> {
    #[inline]
    fn deref_mut(&mut self) -> &mut IndexSlice<I, [A]> {
        IndexSlice::new_mut(&mut self.raw)
    }
}

impl<I: Idx, T> Borrow<IndexSlice<I, [T]>> for IndexVec<I, T> {
    #[inline]
    fn borrow(&self) -> &IndexSlice<I, [T]> {
        self.as_slice()
    }
}

impl<I: Idx, T> BorrowMut<IndexSlice<I, [T]>> for IndexVec<I, T> {
    #[inline]
    fn borrow_mut(&mut self) -> &mut IndexSlice<I, [T]> {
        self.as_mut_slice()
    }
}

macro_rules! impl_partialeq {
    ($Lhs: ty, $Rhs: ty) => {
        impl<'a, 'b, A, B, I: Idx> PartialEq<$Rhs> for $Lhs
        where
            A: PartialEq<B>,
        {
            #[inline]
            fn eq(&self, other: &$Rhs) -> bool {
                self[..] == other[..]
            }
            #[inline]
            fn ne(&self, other: &$Rhs) -> bool {
                self[..] != other[..]
            }
        }
    };
}

macro_rules! impl_partialeq2 {
    ($Lhs: ty, $Rhs: ty) => {
        impl<'a, 'b, A, B, I: Idx, J: Idx> PartialEq<$Rhs> for $Lhs
        where
            A: PartialEq<B>,
        {
            #[inline]
            fn eq(&self, other: &$Rhs) -> bool {
                self.raw[..] == other.raw[..]
            }
            #[inline]
            fn ne(&self, other: &$Rhs) -> bool {
                self.raw[..] != other.raw[..]
            }
        }
    };
}

impl_partialeq! { IndexVec<I, A>, Vec<B> }
impl_partialeq! { IndexVec<I, A>, &'b [B] }
impl_partialeq! { IndexVec<I, A>, &'b mut [B] }

impl_partialeq2! { IndexVec<I, A>, &'b IndexSlice<J, [B]> }
impl_partialeq2! { IndexVec<I, A>, &'b mut IndexSlice<J, [B]> }

impl_partialeq! { &'a IndexSlice<I, [A]>, Vec<B> }
impl_partialeq! { &'a mut IndexSlice<I, [A]>, Vec<B> }

impl_partialeq! { IndexSlice<I, [A]>, &'b [B] }
impl_partialeq! { IndexSlice<I, [A]>, &'b mut [B] }

impl_partialeq2! { &'a IndexSlice<I, [A]>, IndexVec<J, B> }
impl_partialeq2! { &'a mut IndexSlice<I, [A]>, IndexVec<J, B> }

impl_partialeq2! { IndexSlice<I, [A]>, &'a IndexSlice<J, [B]> }
impl_partialeq2! { IndexSlice<I, [A]>, &'a mut IndexSlice<J, [B]> }

macro_rules! array_impls {
    ($($N: expr)+) => {$(
        impl_partialeq! { IndexVec<I, A>, [B; $N] }
        impl_partialeq! { IndexVec<I, A>, &'b [B; $N] }
        impl_partialeq! { IndexSlice<I, [A]>, [B; $N] }
        impl_partialeq! { IndexSlice<I, [A]>, &'b [B; $N] }
        // impl_partialeq! { &'a IndexSlice<I, [A]>, [B; $N] }
        // impl_partialeq! { &'a IndexSlice<I, [A]>, &'b [B; $N] }
    )+};
}

array_impls! {
     0  1  2  3  4  5  6  7  8  9
    10 11 12 13 14 15 16 17 18 19
    20 21 22 23 24 25 26 27 28 29
    30 31 32
}

#[inline(never)]
#[cold]
#[doc(hidden)]
pub fn __max_check_fail(u: usize, max: usize) -> ! {
    panic!(
        "index_vec index overflow: {} is outside the range [0, {})",
        u, max,
    )
}

#[cfg(feature = "serde")]
impl<I: Idx, T: serde::ser::Serialize> serde::ser::Serialize for IndexVec<I, T> {
    fn serialize<S: serde::ser::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        self.raw.serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de, I: Idx, T: serde::de::Deserialize<'de>> serde::de::Deserialize<'de> for IndexVec<I, T> {
    fn deserialize<D: serde::de::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
        Vec::deserialize(deserializer).map(Self::from_vec)
    }
}

#[cfg(feature = "serde")]
impl<I: Idx, T: serde::ser::Serialize> serde::ser::Serialize for IndexBox<I, T> {
    fn serialize<S: serde::ser::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        self.raw.serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de, I: Idx, T: serde::de::Deserialize<'de>> serde::de::Deserialize<'de> for IndexBox<I, [T]> {
    fn deserialize<D: serde::de::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
        Box::<[T]>::deserialize(deserializer).map(Into::into)
    }
}