1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
use super::*;

/// A slice that only accepts indices of a specific type. Note that the intended
/// usage is as `IndexSlice<I, [T]>`.
///
/// This is a thin wrapper around a `[T]`, to the point where the backing  is a
/// public property (called `raw`). This is in part because I know this API is
/// not a complete mirror of Vec's (patches welcome). In the worst case, you can
/// always do what you need to the slice itself.
///
/// ## Some notes on the APIs
///
/// - Most of the Slice APIs are present.
///     - Any that aren't can be trivially accessed on the underlying `raw`
///       field, which is public.
///
/// - Apis that take or return usizes referring to the positions of items were
///   replaced with ones that take Idx.
///
/// - Apis that take `R: RangeBounds<usize>` take an
///   [`IdxRangeBounds<I>`][IdxRangeBounds], which is basically a
///   `RangeBounds<I>`.
/// - Apis that take `SliceIndex<usize>` take an
///   [`IdxSliceIndex<I>`][IdxSliceIndex], which is basically a `SliceIndex<I>`.
///
/// - Most iterator functions where `the_iter().enumerate()` would refer to
///   indices have been given `_enumerated` variants. E.g.
///   [`IndexSlice::iter_enumerated`], etc. This is because
///   `v.iter().enumerate()` would be `(usize, &T)`, but you want `(I, &T)`.
///
/// The following extensions are added:
///
/// - [`IndexSlice::indices`]: an Iterator over the indices of type `I`.
/// - Various `enumerated` iterators mentioned earlier
/// - [`IndexSlice::position`], [`IndexSlice::rposition`] as
///   `self.iter().position()` will return a `Option<usize>`
#[derive(Copy, Clone)]
#[repr(transparent)]
pub struct IndexSlice<I: Idx, T: ?Sized> {
    _marker: PhantomData<fn(&I)>,
    pub raw: T,
}

// Whether `IndexSlice` is `Send` depends only on the data,
// not the phantom data.
unsafe impl<I: Idx, T> Send for IndexSlice<I, [T]> where T: Send {}

impl<I: Idx, T: fmt::Debug + ?Sized> fmt::Debug for IndexSlice<I, T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&self.raw, fmt)
    }
}
/// `IndexBox<I, [T]>`: An alias for indexed boxed slice.
pub type IndexBox<I, T> = Box<IndexSlice<I, T>>;

type SliceMapped<Iter, I, T> = iter::Map<Iter, fn(&[T]) -> &IndexSlice<I, [T]>>;
type SliceMappedMut<Iter, I, T> = iter::Map<Iter, fn(&mut [T]) -> &mut IndexSlice<I, [T]>>;

impl<I: Idx, T> IndexSlice<I, [T]> {
    /// Construct a new IdxSlice by wrapping an existing slice.
    #[inline(always)]
    pub fn new<S: AsRef<[T]> + ?Sized>(s: &S) -> &Self {
        Self::from_slice(s.as_ref())
    }

    /// Construct a new mutable IdxSlice by wrapping an existing mutable slice.
    #[inline(always)]
    pub fn new_mut<S: AsMut<[T]> + ?Sized>(s: &mut S) -> &mut Self {
        Self::from_slice_mut(s.as_mut())
    }

    /// Construct a new IdxSlice by wrapping an existing slice.
    #[inline(always)]
    pub fn from_slice(s: &[T]) -> &Self {
        unsafe { &*(s as *const [T] as *const Self) }
    }

    /// Construct a new mutable IdxSlice by wrapping an existing mutable slice.
    #[inline(always)]
    pub fn from_slice_mut(s: &mut [T]) -> &mut Self {
        unsafe { &mut *(s as *mut [T] as *mut Self) }
    }

    /// Copies `self` into a new `IndexVec`.
    #[inline]
    pub fn to_vec(&self) -> IndexVec<I, T>
    where
        T: Clone,
    {
        IndexVec::from_vec(self.raw.to_vec())
    }

    /// Converts `self` into a vector without clones or allocation.
    ///
    /// The resulting vector can be converted back into a box via
    /// `IndexVec<I, T>`'s `into_boxed_slice` method.
    #[inline]
    #[allow(clippy::wrong_self_convention)]
    pub fn into_vec(self: Box<Self>) -> IndexVec<I, T> {
        unsafe {
            let len = self.len();
            let b = Box::into_raw(self);
            let xs = Vec::from_raw_parts(b as *mut T, len, len);
            IndexVec::from_vec(xs)
        }
    }

    /// Returns the underlying slice.
    #[inline(always)]
    pub fn as_raw_slice_mut(&mut self) -> &mut [T] {
        &mut self.raw
    }

    /// Returns the underlying slice.
    #[inline(always)]
    pub fn as_raw_slice(&self) -> &[T] {
        &self.raw
    }

    /// Returns an unsafe mutable pointer to the slice's buffer.
    #[inline]
    pub fn as_mut_ptr(&mut self) -> *mut T {
        self.raw.as_mut_ptr()
    }

    /// Returns an unsafe pointer to the slice's buffer.
    #[inline]
    pub fn as_ptr(&self) -> *const T {
        self.raw.as_ptr()
    }

    /// Return the index of the last element, or panic.
    #[inline]
    pub fn last_idx(&self) -> I {
        // TODO: should this still be a panic even when `I` has disabled
        // checking?
        assert!(!self.is_empty());
        I::from_usize(self.len() - 1)
    }

    /// Returns the length of our slice.
    #[inline]
    pub fn len(&self) -> usize {
        self.raw.len()
    }

    /// Returns the length of our slice as an `I`.
    #[inline]
    pub fn len_idx(&self) -> I {
        I::from_usize(self.raw.len())
    }

    /// Returns true if we're empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.raw.is_empty()
    }

    /// Get a iterator over reverences to our values.
    ///
    /// See also [`IndexSlice::iter_enumerated`], which gives you indices (of the
    /// correct type) as you iterate.
    #[inline]
    pub fn iter(&self) -> slice::Iter<'_, T> {
        self.raw.iter()
    }

    /// Get a iterator over mut reverences to our values.
    ///
    /// See also [`IndexSlice::iter_mut_enumerated`], which gives you indices (of
    /// the correct type) as you iterate.
    #[inline]
    pub fn iter_mut(&mut self) -> slice::IterMut<'_, T> {
        self.raw.iter_mut()
    }

    /// Similar to `self.iter().enumerate()` but with indices of `I` and not
    /// `usize`.
    #[inline(always)]
    pub fn iter_enumerated(&self) -> Enumerated<slice::Iter<'_, T>, I, &T> {
        self.raw
            .iter()
            .enumerate()
            .map(|(i, t)| (I::from_usize(i), t))
    }

    /// Get an interator over all our indices.
    #[inline(always)]
    pub fn indices(&self) -> iter::Map<Range<usize>, fn(usize) -> I> {
        (0..self.raw.len()).map(I::from_usize)
    }

    /// Similar to `self.iter_mut().enumerate()` but with indices of `I` and not
    /// `usize`.
    #[inline(always)]
    pub fn iter_mut_enumerated(&mut self) -> Enumerated<slice::IterMut<'_, T>, I, &mut T> {
        self.raw
            .iter_mut()
            .enumerate()
            .map(|(i, t)| (I::from_usize(i), t))
    }

    /// Forwards to the slice's `sort` implementation.
    #[inline]
    pub fn sort(&mut self)
    where
        T: Ord,
    {
        self.raw.sort()
    }

    /// Forwards to the slice's `sort_by` implementation.
    #[inline]
    pub fn sort_by<F: FnMut(&T, &T) -> core::cmp::Ordering>(&mut self, compare: F) {
        self.raw.sort_by(compare)
    }

    /// Forwards to the slice's `sort_by_key` implementation.
    #[inline]
    pub fn sort_by_key<F: FnMut(&T) -> K, K: Ord>(&mut self, f: F) {
        self.raw.sort_by_key(f)
    }

    /// Forwards to the slice's `sort_by_cached_key` implementation.
    #[inline]
    pub fn sort_by_cached_key<F: FnMut(&T) -> K, K: Ord>(&mut self, f: F) {
        self.raw.sort_by_cached_key(f)
    }

    /// Forwards to the slice's `sort_unstable` implementation.
    #[inline]
    pub fn sort_unstable(&mut self)
    where
        T: Ord,
    {
        self.raw.sort_unstable()
    }

    /// Forwards to the slice's `sort_unstable_by` implementation.
    #[inline]
    pub fn sort_unstable_by<F: FnMut(&T, &T) -> core::cmp::Ordering>(&mut self, compare: F) {
        self.raw.sort_unstable_by(compare)
    }

    /// Forwards to the slice's `sort_unstable_by_key` implementation.
    #[inline]
    pub fn sort_unstable_by_key<F: FnMut(&T) -> K, K: Ord>(&mut self, f: F) {
        self.raw.sort_unstable_by_key(f)
    }

    /// Forwards to the slice's `ends_with` implementation.
    #[inline]
    pub fn ends_with<S: AsRef<[T]> + ?Sized>(&self, needle: &S) -> bool
    where
        T: PartialEq,
    {
        self.raw.ends_with(needle.as_ref())
    }

    /// Forwards to the slice's `starts_with` implementation.
    #[inline]
    pub fn starts_with<S: AsRef<[T]> + ?Sized>(&self, needle: &S) -> bool
    where
        T: PartialEq,
    {
        self.raw.starts_with(needle.as_ref())
    }

    /// Forwards to the slice's `contains` implementation.
    #[inline]
    pub fn contains(&self, x: &T) -> bool
    where
        T: PartialEq,
    {
        self.raw.contains(x)
    }

    /// Forwards to the slice's `reverse` implementation.
    #[inline]
    pub fn reverse(&mut self) {
        self.raw.reverse()
    }

    /// Call `slice::binary_search` converting the indices it gives us back as
    /// needed.
    #[inline]
    pub fn binary_search(&self, value: &T) -> Result<I, I>
    where
        T: Ord,
    {
        match self.raw.binary_search(value) {
            Ok(i) => Ok(I::from_usize(i)),
            Err(i) => Err(I::from_usize(i)),
        }
    }

    /// Binary searches this sorted vec with a comparator function, converting
    /// the indices it gives us back to our Idx type.
    #[inline]
    pub fn binary_search_by<'a, F: FnMut(&'a T) -> core::cmp::Ordering>(
        &'a self,
        f: F,
    ) -> Result<I, I> {
        match self.raw.binary_search_by(f) {
            Ok(i) => Ok(I::from_usize(i)),
            Err(i) => Err(I::from_usize(i)),
        }
    }

    /// Copies all elements from `src` into `self`, using a memcpy.
    #[inline]
    pub fn copy_from_slice(&mut self, src: &Self)
    where
        T: Copy,
    {
        self.raw.copy_from_slice(&src.raw)
    }

    /// Copies the elements from `src` into `self`.
    #[inline]
    pub fn clone_from_slice(&mut self, src: &Self)
    where
        T: Clone,
    {
        self.raw.clone_from_slice(&src.raw)
    }

    /// Swaps all elements in `self` with those in `other`.
    #[inline]
    pub fn swap_with_slice(&mut self, other: &mut Self) {
        self.raw.swap_with_slice(&mut other.raw)
    }

    /// Binary searches this sorted vec with a key extraction function, converting
    /// the indices it gives us back to our Idx type.
    #[inline]
    pub fn binary_search_by_key<'a, B: Ord, F: FnMut(&'a T) -> B>(
        &'a self,
        b: &B,
        f: F,
    ) -> Result<I, I> {
        match self.raw.binary_search_by_key(b, f) {
            Ok(i) => Ok(I::from_usize(i)),
            Err(i) => Err(I::from_usize(i)),
        }
    }
    /// Searches for an element in an iterator, returning its index. This is
    /// equivalent to `Iterator::position`, but returns `I` and not `usize`.
    #[inline(always)]
    pub fn position<F: FnMut(&T) -> bool>(&self, f: F) -> Option<I> {
        self.raw.iter().position(f).map(I::from_usize)
    }

    /// Searches for an element in an iterator from the right, returning its
    /// index. This is equivalent to `Iterator::position`, but returns `I` and
    /// not `usize`.
    #[inline(always)]
    pub fn rposition<F: FnMut(&T) -> bool>(&self, f: F) -> Option<I> {
        self.raw.iter().rposition(f).map(I::from_usize)
    }

    /// Swaps two elements in our vector.
    #[inline]
    pub fn swap(&mut self, a: I, b: I) {
        self.raw.swap(a.index(), b.index())
    }

    /// Divides our slice into two at an index.
    #[inline]
    pub fn split_at(&self, a: I) -> (&Self, &Self) {
        let (a, b) = self.raw.split_at(a.index());
        (Self::new(a), Self::new(b))
    }

    /// Divides our slice into two at an index.
    #[inline]
    pub fn split_at_mut(&mut self, a: I) -> (&mut Self, &mut Self) {
        let (a, b) = self.raw.split_at_mut(a.index());
        (Self::new_mut(a), Self::new_mut(b))
    }

    /// Rotates our data in-place such that the first `mid` elements of the
    /// slice move to the end while the last `self.len() - mid` elements move to
    /// the front
    #[inline]
    pub fn rotate_left(&mut self, mid: I) {
        self.raw.rotate_left(mid.index())
    }

    /// Rotates our data in-place such that the first `self.len() - k` elements
    /// of the slice move to the end while the last `k` elements move to the
    /// front
    #[inline]
    pub fn rotate_right(&mut self, k: I) {
        self.raw.rotate_right(k.index())
    }

    /// Return the the last element, if we are not empty.
    #[inline(always)]
    pub fn last(&self) -> Option<&T> {
        self.len()
            .checked_sub(1)
            .and_then(|i| self.get(I::from_usize(i)))
    }

    /// Return the the last element, if we are not empty.
    #[inline]
    pub fn last_mut(&mut self) -> Option<&mut T> {
        let i = self.len().checked_sub(1)?;
        self.get_mut(I::from_usize(i))
    }

    /// Return the the first element, if we are not empty.
    #[inline]
    pub fn first(&self) -> Option<&T> {
        self.get(I::from_usize(0))
    }

    /// Return the the first element, if we are not empty.
    #[inline]
    pub fn first_mut(&mut self) -> Option<&mut T> {
        self.get_mut(I::from_usize(0))
    }

    /// Copies elements from one part of the slice to another part of itself,
    /// using a memmove.
    #[inline]
    pub fn copy_within<R: IdxRangeBounds<I>>(&mut self, src: R, dst: I)
    where
        T: Copy,
    {
        self.raw.copy_within(src.into_range(), dst.index())
    }

    /// Get a ref to the item at the provided index, or None for out of bounds.
    #[inline]
    pub fn get<J: IdxSliceIndex<I, T>>(&self, index: J) -> Option<&J::Output> {
        index.get(self)
    }

    /// Get a mut ref to the item at the provided index, or None for out of
    /// bounds
    #[inline]
    pub fn get_mut<J: IdxSliceIndex<I, T>>(&mut self, index: J) -> Option<&mut J::Output> {
        index.get_mut(self)
    }

    /// Wraps the underlying slice's `windows` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn windows(&self, size: usize) -> SliceMapped<slice::Windows<'_, T>, I, T> {
        self.raw.windows(size).map(IndexSlice::new)
    }

    /// Wraps the underlying slice's `chunks` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn chunks(&self, size: usize) -> SliceMapped<slice::Chunks<'_, T>, I, T> {
        self.raw.chunks(size).map(IndexSlice::new)
    }

    /// Wraps the underlying slice's `chunks_mut` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn chunks_mut(&mut self, size: usize) -> SliceMappedMut<slice::ChunksMut<'_, T>, I, T> {
        self.raw.chunks_mut(size).map(IndexSlice::new_mut)
    }

    /// Wraps the underlying slice's `chunks_exact` iterator with one that
    /// yields `IndexSlice`s with the correct index type.
    #[inline]
    pub fn chunks_exact(&self, chunk_size: usize) -> SliceMapped<slice::ChunksExact<'_, T>, I, T> {
        self.raw.chunks_exact(chunk_size).map(IndexSlice::new)
    }

    /// Wraps the underlying slice's `chunks_exact_mut` iterator with one that
    /// yields `IndexSlice`s with the correct index type.
    #[inline]
    pub fn chunks_exact_mut(
        &mut self,
        chunk_size: usize,
    ) -> SliceMappedMut<slice::ChunksExactMut<'_, T>, I, T> {
        self.raw
            .chunks_exact_mut(chunk_size)
            .map(IndexSlice::new_mut)
    }

    /// Wraps the underlying slice's `rchunks` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn rchunks(&self, size: usize) -> SliceMapped<slice::RChunks<'_, T>, I, T> {
        self.raw.rchunks(size).map(IndexSlice::new)
    }

    /// Wraps the underlying slice's `rchunks_mut` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn rchunks_mut(&mut self, size: usize) -> SliceMappedMut<slice::RChunksMut<'_, T>, I, T> {
        self.raw.rchunks_mut(size).map(IndexSlice::new_mut)
    }

    /// Wraps the underlying slice's `rchunks_exact` iterator with one that
    /// yields `IndexSlice`s with the correct index type.
    #[inline]
    pub fn rchunks_exact(
        &self,
        chunk_size: usize,
    ) -> SliceMapped<slice::RChunksExact<'_, T>, I, T> {
        self.raw.rchunks_exact(chunk_size).map(IndexSlice::new)
    }

    /// Wraps the underlying slice's `rchunks_exact_mut` iterator with one that
    /// yields `IndexSlice`s with the correct index type.
    #[inline]
    pub fn rchunks_exact_mut(
        &mut self,
        chunk_size: usize,
    ) -> SliceMappedMut<slice::RChunksExactMut<'_, T>, I, T> {
        self.raw
            .rchunks_exact_mut(chunk_size)
            .map(IndexSlice::new_mut)
    }

    /// Wraps the underlying slice's `split` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn split<F: FnMut(&T) -> bool>(&self, f: F) -> SliceMapped<slice::Split<'_, T, F>, I, T> {
        self.raw.split(f).map(IndexSlice::new)
    }

    /// Wraps the underlying slice's `split_mut` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn split_mut<F: FnMut(&T) -> bool>(
        &mut self,
        f: F,
    ) -> SliceMappedMut<slice::SplitMut<'_, T, F>, I, T> {
        self.raw.split_mut(f).map(IndexSlice::new_mut)
    }

    /// Wraps the underlying slice's `rsplit` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn rsplit<F: FnMut(&T) -> bool>(&self, f: F) -> SliceMapped<slice::RSplit<'_, T, F>, I, T> {
        self.raw.rsplit(f).map(IndexSlice::new)
    }

    /// Wraps the underlying slice's `rsplit_mut` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn rsplit_mut<F: FnMut(&T) -> bool>(
        &mut self,
        f: F,
    ) -> SliceMappedMut<slice::RSplitMut<'_, T, F>, I, T> {
        self.raw.rsplit_mut(f).map(IndexSlice::new_mut)
    }

    /// Wraps the underlying slice's `splitn` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn splitn<F: FnMut(&T) -> bool>(
        &self,
        n: usize,
        f: F,
    ) -> SliceMapped<slice::SplitN<'_, T, F>, I, T> {
        self.raw.splitn(n, f).map(IndexSlice::new)
    }
    /// Wraps the underlying slice's `splitn_mut` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn splitn_mut<F: FnMut(&T) -> bool>(
        &mut self,
        n: usize,
        f: F,
    ) -> SliceMappedMut<slice::SplitNMut<'_, T, F>, I, T> {
        self.raw.splitn_mut(n, f).map(IndexSlice::new_mut)
    }

    /// Wraps the underlying slice's `rsplitn` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn rsplitn<F: FnMut(&T) -> bool>(
        &self,
        n: usize,
        f: F,
    ) -> SliceMapped<slice::RSplitN<'_, T, F>, I, T> {
        self.raw.rsplitn(n, f).map(IndexSlice::new)
    }

    /// Wraps the underlying slice's `rsplitn_mut` iterator with one that yields
    /// `IndexSlice`s with the correct index type.
    #[inline]
    pub fn rsplitn_mut<F: FnMut(&T) -> bool>(
        &mut self,
        n: usize,
        f: F,
    ) -> SliceMappedMut<slice::RSplitNMut<'_, T, F>, I, T> {
        self.raw.rsplitn_mut(n, f).map(IndexSlice::new_mut)
    }

    /// Create a IdxSlice from its pointer and length.
    ///
    /// # Safety
    ///
    /// This is equivalent to `core::slice::from_raw_parts` and has the same
    /// safety caveats.
    #[inline]
    pub unsafe fn from_raw_parts<'a>(data: *const T, len: usize) -> &'a Self {
        Self::new(slice::from_raw_parts(data, len))
    }

    /// Create a mutable IdxSlice from its pointer and length.
    ///
    /// # Safety
    ///
    /// This is equivalent to `core::slice::from_raw_parts_mut` and has the same
    /// safety caveats.
    #[inline]
    pub unsafe fn from_raw_parts_mut<'a>(data: *mut T, len: usize) -> &'a mut Self {
        Self::new_mut(slice::from_raw_parts_mut(data, len))
    }

    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
    #[inline]
    pub fn split_first(&self) -> Option<(&T, &IndexSlice<I, [T]>)> {
        if self.is_empty() {
            None
        } else {
            Some((&self[I::from_usize(0)], &self[I::from_usize(1)..]))
        }
    }

    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
    #[inline]
    pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut IndexSlice<I, [T]>)> {
        if self.is_empty() {
            None
        } else {
            let split = self.split_at_mut(I::from_usize(1));
            Some((&mut split.0[I::from_usize(0)], split.1))
        }
    }

    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
    #[inline]
    pub fn split_last(&self) -> Option<(&T, &IndexSlice<I, [T]>)> {
        if self.is_empty() {
            None
        } else {
            let last = self.last_idx();
            Some((&self[last], &self[..last]))
        }
    }

    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
    #[inline]
    pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut IndexSlice<I, [T]>)> {
        if self.is_empty() {
            None
        } else {
            let last = self.last_idx();
            let split = self.split_at_mut(last);
            Some((&mut split.1[0], split.0))
        }
    }
}

impl<I: Idx, A, B> PartialEq<IndexSlice<I, [B]>> for IndexSlice<I, [A]>
where
    A: PartialEq<B>,
{
    #[inline]
    fn eq(&self, other: &IndexSlice<I, [B]>) -> bool {
        PartialEq::eq(&self.raw, &other.raw)
    }
    #[inline]
    fn ne(&self, other: &IndexSlice<I, [B]>) -> bool {
        PartialEq::ne(&self.raw, &other.raw)
    }
}

impl<I: Idx, A: Eq> Eq for IndexSlice<I, [A]> {}

impl<I: Idx, A, B> PartialEq<[B]> for IndexSlice<I, [A]>
where
    A: PartialEq<B>,
{
    #[inline]
    fn eq(&self, other: &[B]) -> bool {
        PartialEq::eq(&self.raw, other)
    }
    #[inline]
    fn ne(&self, other: &[B]) -> bool {
        PartialEq::ne(&self.raw, other)
    }
}

impl<I: Idx, T: PartialOrd> PartialOrd for IndexSlice<I, [T]> {
    #[inline]
    fn partial_cmp(&self, other: &IndexSlice<I, [T]>) -> Option<core::cmp::Ordering> {
        PartialOrd::partial_cmp(&self.raw, &other.raw)
    }
}

impl<I: Idx, T: core::cmp::Ord> core::cmp::Ord for IndexSlice<I, [T]> {
    #[inline]
    fn cmp(&self, other: &IndexSlice<I, [T]>) -> core::cmp::Ordering {
        core::cmp::Ord::cmp(&self.raw, &other.raw)
    }
}

impl<I: Idx, T: core::hash::Hash> core::hash::Hash for IndexSlice<I, [T]> {
    #[inline]
    fn hash<H: core::hash::Hasher>(&self, h: &mut H) {
        self.raw.hash(h)
    }
}

impl<I: Idx, T> alloc::borrow::ToOwned for IndexSlice<I, [T]>
where
    T: Clone,
{
    type Owned = IndexVec<I, T>;
    #[inline]
    fn to_owned(&self) -> Self::Owned {
        IndexVec::from(self.raw.to_vec())
    }
}

impl<'a, I: Idx, T> IntoIterator for &'a IndexSlice<I, [T]> {
    type Item = &'a T;
    type IntoIter = slice::Iter<'a, T>;

    #[inline]
    fn into_iter(self) -> slice::Iter<'a, T> {
        self.raw.iter()
    }
}

impl<'a, I: Idx, T> IntoIterator for &'a mut IndexSlice<I, [T]> {
    type Item = &'a mut T;
    type IntoIter = slice::IterMut<'a, T>;

    #[inline]
    fn into_iter(self) -> slice::IterMut<'a, T> {
        self.raw.iter_mut()
    }
}

impl<I: Idx, T> Default for &IndexSlice<I, [T]> {
    #[inline]
    fn default() -> Self {
        IndexSlice::new(&[])
    }
}

impl<I: Idx, T> Default for &mut IndexSlice<I, [T]> {
    #[inline]
    fn default() -> Self {
        IndexSlice::new_mut(&mut [])
    }
}

impl<'a, I: Idx, T> From<&'a [T]> for &'a IndexSlice<I, [T]> {
    #[inline]
    fn from(a: &'a [T]) -> Self {
        IndexSlice::new(a)
    }
}

impl<'a, I: Idx, T> From<&'a mut [T]> for &'a mut IndexSlice<I, [T]> {
    #[inline]
    fn from(a: &'a mut [T]) -> Self {
        IndexSlice::new_mut(a)
    }
}

impl<I: Idx, T> From<Box<[T]>> for Box<IndexSlice<I, [T]>> {
    #[inline]
    fn from(b: Box<[T]>) -> Self {
        unsafe { Box::from_raw(Box::into_raw(b) as *mut IndexSlice<I, [T]>) }
    }
}

impl<I: Idx, A> AsRef<[A]> for IndexSlice<I, [A]> {
    #[inline]
    fn as_ref(&self) -> &[A] {
        &self.raw
    }
}

impl<I: Idx, A> AsMut<[A]> for IndexSlice<I, [A]> {
    #[inline]
    fn as_mut(&mut self) -> &mut [A] {
        &mut self.raw
    }
}

impl<I: Idx, T: Clone> Clone for Box<IndexSlice<I, [T]>> {
    #[inline]
    fn clone(&self) -> Self {
        // Suboptimal, I think.
        self.to_vec().into_boxed_slice()
    }
}

impl<I: Idx, A> FromIterator<A> for Box<IndexSlice<I, [A]>> {
    #[inline]
    fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
        iter.into_iter()
            .collect::<IndexVec<I, _>>()
            .into_boxed_slice()
    }
}

impl<I: Idx, A> IntoIterator for Box<IndexSlice<I, [A]>> {
    type Item = A;
    type IntoIter = vec::IntoIter<A>;
    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        let v: IndexVec<I, A> = self.into();
        v.into_iter()
    }
}

impl<I: Idx, A> Default for Box<IndexSlice<I, [A]>> {
    #[inline(always)]
    fn default() -> Self {
        index_vec![].into()
    }
}