1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
//! This crate helps with defining "newtype"-style wrappers around `usize` (or
//! other integers), and `Vec<T>` so that some additional type safety can be
//! gained at zero cost.
//!
//! It's was initially derived from some code in `rustc`, but has diverged since
//! then.
//!
//! ## Example / Overview
//! ```rust
//! use index_vec::{IndexVec, index_vec};
//!
//! index_vec::define_index_type! {
//!     // Define StrIdx to use only 32 bits internally (you can use usize, u16,
//!     // and even u8).
//!     pub struct StrIdx = u32;
//!
//!     // The defaults are very reasonable, but this macro can let
//!     // you customize things quite a bit:
//!
//!     // By default, creating a StrIdx would check an incoming `usize against
//!     // `u32::max_value()`, as u32 is the wrapped index type. Lets imagine that
//!     // StrIdx has to interface with an external system that uses signed ints.
//!     // We can change the checking behavior to complain on i32::max_value()
//!     // instead:
//!     MAX_INDEX = i32::max_value() as usize;
//!
//!     // We can also disable checking all-together if we are more concerned with perf
//!     // than any overflow problems, or even do so, but only for debug builds: Quite
//!     // pointless here, but an okay example
//!     DISABLE_MAX_INDEX_CHECK = cfg!(not(debug_assertions));
//!
//!     // And more too, see this macro's docs for more info.
//! }
//!
//! // Create a vector which can be accessed using `StrIdx`s.
//! let mut strs: IndexVec<StrIdx, &'static str> = index_vec!["strs", "bar", "baz"];
//!
//! // l is a `StrIdx`
//! let l = strs.last_idx();
//! assert_eq!(strs[l], "baz");
//!
//! let new_i = strs.push("quux");
//! assert_eq!(strs[new_i], "quux");
//!
//! // Indices are mostly interoperable with `usize`, and support
//! // a lot of what you might want to do to an index.
//!
//! // Comparison
//! assert_eq!(StrIdx::new(0), 0usize);
//1
//! // Addition
//! assert_eq!(StrIdx::new(0) + 1, 1usize);
//!
//! // Subtraction
//! assert_eq!(StrIdx::new(1) - 1, 0usize);
//!
//! // Wrapping
//! assert_eq!(StrIdx::new(5) % strs.len(), 1usize);
//! // ...
//! ```
//! ## Background
//!
//! The goal is to help with the pattern of using a `type FooIdx = usize` to
//! access a `Vec<Foo>` with something that can statically prevent using a
//! `FooIdx` in a `Vec<Bar>`. It's most useful if you have a bunch of indices
//! referring to different sorts of vectors.
//!
//! Much of the code for this is taken from `rustc`'s `IndexVec` code, however
//! it's diverged a decent amount at this point. Some notable changes:
//!
//! - No usage of unstable features.
//! - Different syntax for defining index types.
//! - More complete mirroring of Vec's API.
//! - Allows use of using other index types than `u32`/`usize`.
//! - More flexible behavior around how strictly some checks are performed,
//!
//! ## Other crates
//!
//! The [`indexed_vec`](https://crates.io/crates/indexed_vec) crate predates
//! this, and is a much closer copy of the code from `rustc`. Unfortunately,
//! this means it does not compile on stable.
//!
//! If you're looking for something further from a vec and closer to a map, you
//! might find [`handy`](https://crates.io/crates/handy),
//! [`slotmap`](https://crates.io/crates/slotmap), or
//! [`slab`](https://crates.io/crates/slab) to be closer what you want.

#![no_std]
extern crate alloc;

use alloc::vec;
use alloc::vec::Vec;
use core::fmt;
use core::fmt::Debug;
use core::hash::Hash;
use core::iter::{self, FromIterator};
use core::marker::PhantomData;
use core::ops::{Index, IndexMut, Range, RangeBounds};
use core::slice;
use core::u32;

#[macro_use]
mod macros;
pub use macros::*;

#[cfg(feature = "example_generated")]
pub mod example_generated;

/// Represents a wrapped value convertable to and from a `usize`.
///
/// Generally you implement this via the [`define_index_type!`] macro, rather
/// than manually implementing it.
///
/// # Overflow
///
/// `Idx` impls are allowed to be smaller than `usize`, which means converting
/// `usize` to an `Idx` implementation might have to handle overflow.
///
/// The way overflow is handled is up to the implementation of `Idx`, but it's
/// generally panicing, unless it was turned off via the `CHECK_MAX_INDEX_IF`
/// parameter in `define_index_type`.
///
/// This trait, as you can see, doesn't have a `try_from_usize`. The `IndexVec`
/// type doesn't have additional functions exposing ways to handle index
/// overflow. I'm open to adding these, but at the moment you should pick a size
/// large enough that you won't hit problems, or verify the size cannot overflow
/// elsewhere.
pub trait Idx: Copy + 'static + Ord + Debug + Hash {
    /// Equivalent to From<usize>
    fn from_usize(idx: usize) -> Self;
    /// Equivalent to Into<usize>
    fn index(self) -> usize;
}

// XXX: Hrm...
impl Idx for usize {
    #[inline]
    fn from_usize(idx: usize) -> Self {
        idx
    }
    #[inline]
    fn index(self) -> usize {
        self
    }
}

impl Idx for u32 {
    #[inline]
    fn from_usize(idx: usize) -> Self {
        assert!(idx <= u32::max_value() as usize);
        idx as u32
    }

    #[inline]
    fn index(self) -> usize {
        self as usize
    }
}

/// A Vec that only accepts indices of a specific type.
///
/// This is a thin wrapper around `Vec`, to the point where the backing vec is a
/// public property. This is in part because I know this API is not a complete
/// mirror of Vec's (patches welcome). In the worst case, you can always do what
/// you need to the Vec itself.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct IndexVec<I: Idx, T> {
    /// Our wrapped Vec.
    pub vec: Vec<T>,
    _marker: PhantomData<fn(&I)>,
}

// Whether `IndexVec` is `Send` depends only on the data,
// not the phantom data.
unsafe impl<I: Idx, T> Send for IndexVec<I, T> where T: Send {}

impl<I: Idx, T: fmt::Debug> fmt::Debug for IndexVec<I, T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&self.vec, fmt)
    }
}

type Enumerated<Iter, I, T> = iter::Map<iter::Enumerate<Iter>, (fn((usize, T)) -> (I, T))>;

impl<I: Idx, T> IndexVec<I, T> {
    /// Construct a new IndexVec.
    #[inline]
    pub fn new() -> Self {
        IndexVec {
            vec: Vec::new(),
            _marker: PhantomData,
        }
    }

    /// Construct a `IndexVec` from a `Vec<T>`.
    ///
    /// Panics if it's length is too large for our index type.
    #[inline]
    pub fn from_vec(vec: Vec<T>) -> Self {
        // See if `I::from_usize` might be upset by this length.
        let _ = I::from_usize(vec.len());
        IndexVec {
            vec,
            _marker: PhantomData,
        }
    }

    /// Construct an IndexVec that can hold at least `capacity` items before
    /// reallocating. See [`Vec::with_capacity`].
    #[inline]
    pub fn with_capacity(capacity: usize) -> Self {
        IndexVec {
            vec: Vec::with_capacity(capacity),
            _marker: PhantomData,
        }
    }

    /// Get a the storage as a `&[T]`
    #[inline]
    pub fn as_slice(&self) -> &[T] {
        self.vec.as_slice()
    }

    /// Get a the storage as a `&mut [T]`
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        self.vec.as_mut_slice()
    }

    /// Push a new item onto the vector, and return it's index.
    #[inline]
    pub fn push(&mut self, d: T) -> I {
        let idx = I::from_usize(self.len());
        self.vec.push(d);
        idx
    }

    /// Pops the last item off, returning it. See [`Vec::pop`].
    #[inline]
    pub fn pop(&mut self) -> Option<T> {
        self.vec.pop()
    }

    /// Returns the length of our vector.
    #[inline]
    pub fn len(&self) -> usize {
        self.vec.len()
    }

    /// Returns true if we're empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.vec.is_empty()
    }

    /// Similar to `self.into_iter().enumerate()` but with indices of `I` and
    /// not `usize`.
    #[inline]
    pub fn into_iter_enumerated(self) -> Enumerated<vec::IntoIter<T>, I, T> {
        self.vec
            .into_iter()
            .enumerate()
            .map(|(i, t)| (Idx::from_usize(i), t))
    }

    /// Get a iterator over reverences to our values.
    #[inline]
    pub fn iter(&self) -> slice::Iter<'_, T> {
        self.vec.iter()
    }

    /// Similar to `self.iter().enumerate()` but with indices of `I` and not
    /// `usize`.
    #[inline]
    pub fn iter_enumerated(&self) -> Enumerated<slice::Iter<'_, T>, I, &T> {
        self.vec
            .iter()
            .enumerate()
            .map(|(i, t)| (Idx::from_usize(i), t))
    }

    /// Get an interator over all our indices.
    #[inline]
    pub fn indices(&self) -> iter::Map<Range<usize>, fn(usize) -> I> {
        (0..self.len()).map(Idx::from_usize)
    }

    /// Get a iterator over mut reverences to our values.
    #[inline]
    pub fn iter_mut(&mut self) -> slice::IterMut<'_, T> {
        self.vec.iter_mut()
    }

    /// Similar to `self.iter_mut().enumerate()` but with indices of `I` and not
    /// `usize`.
    #[inline]
    pub fn iter_mut_enumerated(&mut self) -> Enumerated<slice::IterMut<'_, T>, I, &mut T> {
        self.vec
            .iter_mut()
            .enumerate()
            .map(|(i, t)| (Idx::from_usize(i), t))
    }

    /// Return an iterator that removes the items from the requested range. See
    /// [`Vec::drain`].
    #[inline]
    pub fn drain<R: RangeBounds<usize>>(&mut self, range: R) -> vec::Drain<'_, T> {
        self.vec.drain(range)
    }

    /// Similar to `self.drain(r).enumerate()` but with indices of `I` and not
    /// `usize`.
    #[inline]
    pub fn drain_enumerated<R: RangeBounds<usize>>(
        &mut self,
        range: R,
    ) -> Enumerated<vec::Drain<'_, T>, I, T> {
        self.vec
            .drain(range)
            .enumerate()
            .map(|(i, t)| (Idx::from_usize(i), t))
    }

    /// Return the index of the last element, if we are not empty.
    #[inline]
    pub fn last(&self) -> Option<I> {
        self.len().checked_sub(1).map(I::from_usize)
    }

    /// Shrinks the capacity of the vector as much as possible.
    #[inline]
    pub fn shrink_to_fit(&mut self) {
        self.vec.shrink_to_fit()
    }

    /// Swaps two elements in our vector.
    #[inline]
    pub fn swap(&mut self, a: I, b: I) {
        self.vec.swap(a.index(), b.index())
    }

    /// Shortens the vector, keeping the first `len` elements and dropping
    /// the rest. See [`Vec::truncate`]
    #[inline]
    pub fn truncate(&mut self, a: usize) {
        self.vec.truncate(a)
    }

    /// Clear our vector. See [`Vec::clear`].
    #[inline]
    pub fn clear(&mut self) {
        self.vec.clear()
    }

    /// Reserve capacity for `c` more elements. See [`Vec::reserve`]
    #[inline]
    pub fn reserve(&mut self, c: usize) {
        self.vec.reserve(c)
    }

    /// Gives the next index that will be assigned when `push` is
    /// called.
    #[inline]
    pub fn next_idx(&self) -> I {
        I::from_usize(self.len())
    }

    /// Return the index of the last element, or panic.
    #[inline]
    pub fn last_idx(&self) -> I {
        assert!(!self.is_empty());
        I::from_usize(self.len() - 1)
    }

    /// Get a ref to the item at the provided index, or None for out of bounds.
    #[inline]
    pub fn get(&self, index: I) -> Option<&T> {
        self.vec.get(index.index())
    }

    /// Get a mut ref to the item at the provided index, or None for out of
    /// bounds
    #[inline]
    pub fn get_mut(&mut self, index: I) -> Option<&mut T> {
        self.vec.get_mut(index.index())
    }

    /// Resize ourselves in-place to `new_len`. See [`Vec::resize`].
    #[inline]
    pub fn resize(&mut self, new_len: usize, value: T)
    where
        T: Clone,
    {
        self.vec.resize(new_len, value)
    }

    /// Resize ourselves in-place to `new_len`. See [`Vec::resize_with`].
    #[inline]
    pub fn resize_with<F: FnMut() -> T>(&mut self, new_len: usize, f: F) {
        self.vec.resize_with(new_len, f)
    }

    /// Moves all the elements of `other` into `Self`, leaving `other` empty.
    /// See [`Vec::append`].
    #[inline]
    pub fn append(&mut self, other: &mut Self) {
        self.vec.append(&mut other.vec)
    }

    /// Splits the collection into two at the given index. See
    /// [`Vec::split_off`].
    #[inline]
    pub fn split_off(&mut self, idx: I) -> Self {
        Self::from_vec(self.vec.split_off(idx.index()))
    }

    /// Remove the item at `index`. See [`Vec::remove`].
    #[inline]
    pub fn remove(&mut self, index: I) -> T {
        self.vec.remove(index.index())
    }

    /// Insert an item at `index`. See [`Vec::insert`].
    #[inline]
    pub fn insert(&mut self, index: I, element: T) {
        self.vec.insert(index.index(), element)
    }

    /// Remove the item at `index` without maintaining order. See [`Vec::swap_remove`].
    #[inline]
    pub fn swap_remove(&mut self, index: I) -> T {
        self.vec.swap_remove(index.index())
    }

    /// Call `slice::binary_search` converting the indices it gives us back as
    /// needed.
    #[inline]
    pub fn binary_search(&self, value: &T) -> Result<I, I>
    where
        T: Ord,
    {
        match self.vec.binary_search(value) {
            Ok(i) => Ok(Idx::from_usize(i)),
            Err(i) => Err(Idx::from_usize(i)),
        }
    }

    /// Append all items in the slice to the end of our vector.
    ///
    /// See [`Vec::extend_from_slice`].
    #[inline]
    pub fn extend_from_slice(&mut self, other: &[T])
    where
        T: Clone,
    {
        self.vec.extend_from_slice(other)
    }
}

impl<I: Idx, T> Index<I> for IndexVec<I, T> {
    type Output = T;

    #[inline]
    fn index(&self, index: I) -> &T {
        &self.vec[index.index()]
    }
}

impl<I: Idx, T> IndexMut<I> for IndexVec<I, T> {
    #[inline]
    fn index_mut(&mut self, index: I) -> &mut T {
        &mut self.vec[index.index()]
    }
}

impl<I: Idx, T> Default for IndexVec<I, T> {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl<I: Idx, T> Extend<T> for IndexVec<I, T> {
    #[inline]
    fn extend<J: IntoIterator<Item = T>>(&mut self, iter: J) {
        self.vec.extend(iter);
    }
}

impl<'a, I: Idx, T: 'a + Copy> Extend<&'a T> for IndexVec<I, T> {
    #[inline]
    fn extend<J: IntoIterator<Item = &'a T>>(&mut self, iter: J) {
        self.vec.extend(iter);
    }
}

impl<I: Idx, T> FromIterator<T> for IndexVec<I, T> {
    #[inline]
    fn from_iter<J>(iter: J) -> Self
    where
        J: IntoIterator<Item = T>,
    {
        IndexVec {
            vec: FromIterator::from_iter(iter),
            _marker: PhantomData,
        }
    }
}

impl<I: Idx, T> IntoIterator for IndexVec<I, T> {
    type Item = T;
    type IntoIter = vec::IntoIter<T>;

    #[inline]
    fn into_iter(self) -> vec::IntoIter<T> {
        self.vec.into_iter()
    }
}

impl<'a, I: Idx, T> IntoIterator for &'a IndexVec<I, T> {
    type Item = &'a T;
    type IntoIter = slice::Iter<'a, T>;

    #[inline]
    fn into_iter(self) -> slice::Iter<'a, T> {
        self.vec.iter()
    }
}

impl<'a, I: Idx, T> IntoIterator for &'a mut IndexVec<I, T> {
    type Item = &'a mut T;
    type IntoIter = slice::IterMut<'a, T>;

    #[inline]
    fn into_iter(self) -> slice::IterMut<'a, T> {
        self.vec.iter_mut()
    }
}

impl<I: Idx, T> From<Vec<T>> for IndexVec<I, T> {
    #[inline]
    fn from(v: Vec<T>) -> Self {
        Self {
            vec: v,
            _marker: PhantomData,
        }
    }
}