1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
#![forbid(unsafe_code, missing_docs, missing_debug_implementations)]

//! The purpose of this crate is to maintain an topological order in the face
//! of single updates, like adding new nodes, adding new depedencies, deleting
//! dependencies, and deleting nodes.
//!
//! Adding nodes, deleting nodes, and deleting dependencies require a trivial
//! amount of work to perform an update, because those operations do not change
//! the topological ordering. Adding new dependencies can change the topological
//! ordering.
//!
//! ## What is a Topological Order
//!
//! To define a topological order requires at least a simple definition of a
//! graph, and specifically a directed acyclic graph (DAG). A graph can be
//! described as a pair of sets, `(V, E)` where `V` is the set of all nodes in
//! the graph, and `E` is the set of edges. An edge is defined as a pair, `(m,
//! n)` where `m` and `n` are nodes. A directed graph means that edges only
//! imply a single direction of relationship between two nodes, as opposed to a
//! undirected graph which implies the relationship goes both ways. An example
//! of undirected vs. directed in social networks would be Facebook vs.
//! Twitter. Facebook friendship is a two way relationship, while following
//! someone on Twitter does not imply that they follow you back.
//!
//! A topological ordering, `ord_D` of a directed acyclic graph, `D = (V, E)`
//! where `x, y ∈ V`, is a mapping of nodes to priority values such that
//! `ord_D(x) < ord_D(y)` holds for all edges `(x, y) ∈ E`. This yields a total
//! ordering of the nodes in `D`.
//!
//! ## Examples
//!
//! ```
//! use incremental_topo::IncrementalTopo;
//! use std::{cmp::Ordering::*, collections::HashSet};
//!
//! let mut dag = IncrementalTopo::new();
//!
//! let dog = dag.add_node();
//! let cat = dag.add_node();
//! let mouse = dag.add_node();
//! let lion = dag.add_node();
//! let human = dag.add_node();
//! let gazelle = dag.add_node();
//! let grass = dag.add_node();
//!
//! assert_eq!(dag.len(), 7);
//!
//! dag.add_dependency(&lion, &human).unwrap();
//! dag.add_dependency(&lion, &gazelle).unwrap();
//!
//! dag.add_dependency(&human, &dog).unwrap();
//! dag.add_dependency(&human, &cat).unwrap();
//!
//! dag.add_dependency(&dog, &cat).unwrap();
//! dag.add_dependency(&cat, &mouse).unwrap();
//!
//! dag.add_dependency(&gazelle, &grass).unwrap();
//!
//! dag.add_dependency(&mouse, &grass).unwrap();
//!
//! let pairs = dag
//!     .descendants_unsorted(&human)
//!     .unwrap()
//!     .collect::<HashSet<_>>();
//! let expected_pairs = [(4, cat), (3, dog), (5, mouse), (7, grass)]
//!     .iter()
//!     .cloned()
//!     .collect::<HashSet<_>>();
//!
//! assert_eq!(pairs, expected_pairs);
//!
//! assert!(dag.contains_transitive_dependency(&lion, &grass));
//! assert!(!dag.contains_transitive_dependency(&human, &gazelle));
//!
//! assert_eq!(dag.topo_cmp(&cat, &dog), Greater);
//! assert_eq!(dag.topo_cmp(&lion, &human), Less);
//! ```
//!
//! ## Sources
//!
//! The [paper by D. J. Pearce and P. H. J. Kelly] contains descriptions of
//! three different algorithms for incremental topological ordering, along with
//! analysis of runtime bounds for each.
//!
//! [paper by D. J. Pearce and P. H. J. Kelly]: http://www.doc.ic.ac.uk/~phjk/Publications/DynamicTopoSortAlg-JEA-07.pdf

use fnv::FnvHashSet;
use generational_arena::{Arena, Index as ArenaIndex};
use std::{
    borrow::Borrow,
    cmp::{Ordering, Reverse},
    collections::BinaryHeap,
    fmt,
    iter::Iterator,
};

/// Data structure for maintaining a topological ordering over a collection
/// of elements, in an incremental fashion.
///
/// See the [module-level documentation] for more information.
///
/// [module-level documentation]: index.html
#[derive(Default, Debug, Clone)]
pub struct IncrementalTopo {
    node_data: Arena<NodeData>,
    last_topo_order: TopoOrder,
}

/// An identifier of a node in the [`IncrementalTopo`] object.
///
/// This identifier contains metadata so that a node which has been passed to
/// [`IncrementalTopo::delete_node`] will not be confused with a node created
/// later.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct Node(ArenaIndex);

impl From<ArenaIndex> for Node {
    fn from(src: ArenaIndex) -> Self {
        Node(src)
    }
}

/// An identifier of a node that is lacking additional safety metadata that
/// prevents ABA issues.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
struct UnsafeIndex(usize);

impl From<Node> for UnsafeIndex {
    fn from(src: Node) -> Self {
        // extract index part of [`ArenaIndex`], discarding generation information
        UnsafeIndex(src.0.into_raw_parts().0)
    }
}

impl From<&Node> for UnsafeIndex {
    fn from(src: &Node) -> Self {
        // extract index part of [`ArenaIndex`], discarding generation information
        UnsafeIndex(src.0.into_raw_parts().0)
    }
}

/// The representation of a node, with all information about it ordering, which
/// nodes it points to, and which nodes point to it.
#[derive(Debug, Clone, PartialEq, Eq)]
struct NodeData {
    topo_order: TopoOrder,
    parents: FnvHashSet<UnsafeIndex>,
    children: FnvHashSet<UnsafeIndex>,
}

impl NodeData {
    /// Create a new node entry with the specified topological order.
    fn new(topo_order: TopoOrder) -> Self {
        NodeData {
            topo_order,
            parents: FnvHashSet::default(),
            children: FnvHashSet::default(),
        }
    }
}

type TopoOrder = usize;

impl PartialOrd for NodeData {
    fn partial_cmp(&self, other: &NodeData) -> Option<Ordering> {
        Some(self.topo_order.cmp(&other.topo_order))
    }
}

impl Ord for NodeData {
    fn cmp(&self, other: &Self) -> Ordering {
        self.partial_cmp(other).unwrap()
    }
}

/// Different types of failures that can occur while updating or querying
/// the graph.
#[derive(Debug, PartialEq, Eq)]
pub enum Error {
    /// The given node was not found in the topological order.
    ///
    /// This usually means that the node was deleted, but a reference was
    /// kept around after which is now invalid.
    NodeMissing,
    /// Cycles of nodes may not be formed in the graph.
    CycleDetected,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Error::NodeMissing => {
                write!(f, "The given node was not found in the topological order")
            },
            Error::CycleDetected => write!(f, "Cycles of nodes may not be formed in the graph"),
        }
    }
}

impl std::error::Error for Error {}

impl IncrementalTopo {
    /// Create a new IncrementalTopo graph.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// let dag = IncrementalTopo::new();
    ///
    /// assert!(dag.is_empty());
    /// ```
    pub fn new() -> Self {
        IncrementalTopo {
            last_topo_order: 0,
            node_data: Arena::new(),
        }
    }

    /// Add a new node to the graph and return a unique [`Node`] which
    /// identifies it.
    ///
    /// Initially this node will not have any order relative to the values
    /// that are already in the graph. Only when relations are added
    /// with [`add_dependency`] will the order begin to matter.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let cat = dag.add_node();
    /// let dog = dag.add_node();
    /// let mouse = dag.add_node();
    /// let human = dag.add_node();
    ///
    /// assert_ne!(cat, dog);
    /// assert_ne!(cat, mouse);
    /// assert_ne!(cat, human);
    /// assert_ne!(dog, mouse);
    /// assert_ne!(dog, human);
    /// assert_ne!(mouse, human);
    ///
    /// assert!(dag.contains_node(&cat));
    /// assert!(dag.contains_node(&dog));
    /// assert!(dag.contains_node(&mouse));
    /// assert!(dag.contains_node(&human));
    /// ```
    ///
    /// [`add_dependency`]: struct.IncrementalTopo.html#method.add_dependency
    pub fn add_node(&mut self) -> Node {
        let next_topo_order = self.last_topo_order + 1;
        self.last_topo_order = next_topo_order;

        let node_data = NodeData::new(next_topo_order);

        Node(self.node_data.insert(node_data))
    }

    /// Returns true if the graph contains the specified node.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let cat = dag.add_node();
    /// let dog = dag.add_node();
    ///
    /// assert!(dag.contains_node(cat));
    /// assert!(dag.contains_node(dog));
    /// ```
    pub fn contains_node(&self, node: impl Borrow<Node>) -> bool {
        let node = node.borrow();
        self.node_data.contains(node.0)
    }

    /// Attempt to remove node from graph, returning true if the node was
    /// contained and removed.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let cat = dag.add_node();
    /// let dog = dag.add_node();
    ///
    /// assert!(dag.delete_node(cat));
    /// assert!(dag.delete_node(dog));
    ///
    /// assert!(!dag.delete_node(cat));
    /// assert!(!dag.delete_node(dog));
    /// ```
    pub fn delete_node(&mut self, node: Node) -> bool {
        if !self.node_data.contains(node.0) {
            return false;
        }

        // Remove associated data
        let data = self.node_data.remove(node.0).unwrap();

        // Delete forward edges
        for child in data.children {
            if let Some((child_data, _)) = self.node_data.get_unknown_gen_mut(child.0) {
                child_data.parents.remove(&node.into());
            }
        }

        // Delete backward edges
        for parent in data.parents {
            if let Some((parent_data, _)) = self.node_data.get_unknown_gen_mut(parent.0) {
                parent_data.children.remove(&node.into());
            }
        }

        // TODO Fix inefficient compaction step
        for (_, other_node) in self.node_data.iter_mut() {
            if other_node.topo_order > data.topo_order {
                other_node.topo_order -= 1;
            }
        }

        // Decrement last topo order to account for shifted topo values
        self.last_topo_order -= 1;

        true
    }

    /// Add a directed link between two nodes already present in the graph.
    ///
    /// This link indicates an ordering constraint on the two nodes, now
    /// `prec` must always come before `succ` in the ordering.
    ///
    /// Returns `Ok(true)` if the graph did not previously contain this
    /// dependency. Returns `Ok(false)` if the graph did have a previous
    /// dependency between these two nodes.
    ///
    /// # Errors
    /// This function will return an `Err` if the dependency introduces a
    /// cycle into the graph or if either of the nodes passed is not
    /// found in the graph.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let cat = dag.add_node();
    /// let mouse = dag.add_node();
    /// let dog = dag.add_node();
    /// let human = dag.add_node();
    ///
    /// assert!(dag.add_dependency(&human, dog).unwrap());
    /// assert!(dag.add_dependency(&human, cat).unwrap());
    /// assert!(dag.add_dependency(&cat, mouse).unwrap());
    /// ```
    ///
    /// Here is an example which returns [`Error::CycleDetected`] when
    /// introducing a cycle:
    ///
    /// ```
    /// # use incremental_topo::{IncrementalTopo, Error};
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let n0 = dag.add_node();
    /// assert_eq!(dag.add_dependency(&n0, &n0), Err(Error::CycleDetected));
    ///
    /// let n1 = dag.add_node();
    ///
    /// assert!(dag.add_dependency(&n0, &n1).unwrap());
    /// assert_eq!(dag.add_dependency(&n1, &n0), Err(Error::CycleDetected));
    ///
    /// let n2 = dag.add_node();
    ///
    /// assert!(dag.add_dependency(&n1, &n2).unwrap());
    /// assert_eq!(dag.add_dependency(&n2, &n0), Err(Error::CycleDetected));
    /// ```
    pub fn add_dependency(
        &mut self,
        prec: impl Borrow<Node>,
        succ: impl Borrow<Node>,
    ) -> Result<bool, Error> {
        let prec = prec.borrow();
        let succ = succ.borrow();

        if prec == succ {
            // No loops to self
            return Err(Error::CycleDetected);
        }

        let succ_index = UnsafeIndex::from(succ);
        let prec_index = UnsafeIndex::from(prec);

        // Insert forward edge
        let mut no_prev_edge = self.node_data[prec.0].children.insert(succ_index);
        let upper_bound = self.node_data[prec.0].topo_order;

        // Insert backward edge
        no_prev_edge = no_prev_edge && self.node_data[succ.0].parents.insert(prec_index);
        let lower_bound = self.node_data[succ.0].topo_order;

        // If edge already exists short circuit
        if !no_prev_edge {
            return Ok(false);
        }

        log::info!("Adding edge from {:?} to {:?}", prec, succ);

        log::trace!(
            "Upper: Order({}), Lower: Order({})",
            upper_bound,
            lower_bound
        );
        // If the affected region of the graph has non-zero size (i.e. the upper and
        // lower bound are equal) then perform an update to the topological ordering of
        // the graph
        if lower_bound < upper_bound {
            log::trace!("Will change");
            let mut visited = FnvHashSet::default();

            // Walk changes forward from the succ, checking for any cycles that would be
            // introduced
            let change_forward = match self.dfs_forward(succ_index, &mut visited, upper_bound) {
                Ok(change_set) => change_set,
                Err(err) => {
                    // need to remove parent + child info that was previously added

                    self.node_data[prec.0].children.remove(&succ_index);
                    self.node_data[succ.0].parents.remove(&prec_index);

                    return Err(err);
                },
            };
            log::trace!("Change forward: {:?}", change_forward);
            // Walk backwards from the prec
            let change_backward = self.dfs_backward(prec_index, &mut visited, lower_bound);
            log::trace!("Change backward: {:?}", change_backward);

            self.reorder_nodes(change_forward, change_backward);
        } else {
            log::trace!("No change");
        }

        Ok(true)
    }

    /// Returns true if the graph contains a dependency from `prec` to
    /// `succ`.
    ///
    /// Returns false if either node is not found, or if there is no
    /// dependency.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let cat = dag.add_node();
    /// let mouse = dag.add_node();
    /// let human = dag.add_node();
    /// let horse = dag.add_node();
    ///
    /// assert!(dag.add_dependency(&human, &cat).unwrap());
    /// assert!(dag.add_dependency(&cat, &mouse).unwrap());
    ///
    /// assert!(dag.contains_dependency(&cat, &mouse));
    /// assert!(!dag.contains_dependency(&human, &mouse));
    /// assert!(!dag.contains_dependency(&cat, &horse));
    /// ```
    pub fn contains_dependency(&self, prec: impl Borrow<Node>, succ: impl Borrow<Node>) -> bool {
        let prec = prec.borrow();
        let succ = succ.borrow();

        if !self.node_data.contains(prec.0) || !self.node_data.contains(succ.0) {
            return false;
        }

        self.node_data[prec.0].children.contains(&succ.into())
    }

    /// Returns true if the graph contains a transitive dependency from
    /// `prec` to `succ`.
    ///
    /// In this context a transitive dependency means that `succ` exists as
    /// a descendant of `prec`, with some chain of other nodes in
    /// between.
    ///
    /// Returns false if either node is not found in the graph, or there is
    /// no transitive dependency.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let cat = dag.add_node();
    /// let mouse = dag.add_node();
    /// let dog = dag.add_node();
    /// let human = dag.add_node();
    ///
    /// assert!(dag.add_dependency(&human, &cat).unwrap());
    /// assert!(dag.add_dependency(&human, &dog).unwrap());
    /// assert!(dag.add_dependency(&cat, &mouse).unwrap());
    ///
    /// assert!(dag.contains_transitive_dependency(&human, &mouse));
    /// assert!(!dag.contains_transitive_dependency(&dog, &mouse));
    /// ```
    pub fn contains_transitive_dependency(
        &self,
        prec: impl Borrow<Node>,
        succ: impl Borrow<Node>,
    ) -> bool {
        let prec = prec.borrow();
        let succ = succ.borrow();

        // If either node is missing, return quick
        if !self.node_data.contains(prec.0) || !self.node_data.contains(succ.0) {
            return false;
        }

        // A node cannot depend on itself
        if prec.0 == succ.0 {
            return false;
        }

        // Else we have to search the graph. Using dfs in this case because it avoids
        // the overhead of the binary heap, and this task doesn't really need ordered
        // descendants.
        let mut stack = Vec::new();
        let mut visited = FnvHashSet::default();

        stack.push(UnsafeIndex::from(prec));

        // For each node key popped off the stack, check that we haven't seen it
        // before, then check if its children contain the node we're searching for.
        // If they don't, continue the search by extending the stack with the children.
        while let Some(key) = stack.pop() {
            if visited.contains(&key) {
                continue;
            } else {
                visited.insert(key);
            }

            let children = &self.node_data.get_unknown_gen(key.0).unwrap().0.children;

            if children.contains(&succ.into()) {
                return true;
            } else {
                stack.extend(children);

                continue;
            }
        }

        // If we exhaust the stack, then there is no transitive dependency.
        false
    }

    /// Attempt to remove a dependency from the graph, returning true if the
    /// dependency was removed.
    ///
    /// Returns false is either node is not found in the graph.
    ///
    /// Removing a dependency from the graph is an extremely simple
    /// operation, which requires no recalculation of the
    /// topological order. The ordering before and after a removal
    /// is exactly the same.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let cat = dag.add_node();
    /// let mouse = dag.add_node();
    /// let dog = dag.add_node();
    /// let human = dag.add_node();
    ///
    /// assert!(dag.add_dependency(&human, &cat).unwrap());
    /// assert!(dag.add_dependency(&human, &dog).unwrap());
    /// assert!(dag.add_dependency(&cat, &mouse).unwrap());
    ///
    /// assert!(dag.delete_dependency(&cat, mouse));
    /// assert!(dag.delete_dependency(&human, dog));
    /// assert!(!dag.delete_dependency(&human, mouse));
    /// ```
    pub fn delete_dependency(&mut self, prec: impl Borrow<Node>, succ: impl Borrow<Node>) -> bool {
        let prec = prec.borrow();
        let succ = succ.borrow();

        if !self.node_data.contains(prec.0) || !self.node_data.contains(succ.0) {
            return false;
        }

        let prec_children = &mut self.node_data[prec.0].children;

        if !prec_children.contains(&succ.into()) {
            return false;
        }

        prec_children.remove(&succ.into());
        self.node_data[succ.0].parents.remove(&prec.into());

        true
    }

    /// Return the number of nodes within the graph.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let cat = dag.add_node();
    /// let mouse = dag.add_node();
    /// let dog = dag.add_node();
    /// let human = dag.add_node();
    ///
    /// assert_eq!(dag.len(), 4);
    /// ```
    pub fn len(&self) -> usize {
        self.node_data.len()
    }

    /// Return true if there are no nodes in the graph.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// let mut dag = IncrementalTopo::new();
    ///
    /// assert!(dag.is_empty());
    ///
    /// let cat = dag.add_node();
    /// let mouse = dag.add_node();
    /// let dog = dag.add_node();
    /// let human = dag.add_node();
    ///
    /// assert!(!dag.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Return an iterator over all the nodes of the graph in an unsorted order.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// use std::collections::HashSet;
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let cat = dag.add_node();
    /// let mouse = dag.add_node();
    /// let dog = dag.add_node();
    /// let human = dag.add_node();
    ///
    /// assert!(dag.add_dependency(&human, &cat).unwrap());
    /// assert!(dag.add_dependency(&human, &dog).unwrap());
    /// assert!(dag.add_dependency(&cat, &mouse).unwrap());
    ///
    /// let pairs = dag.iter_unsorted().collect::<HashSet<_>>();
    ///
    /// let mut expected_pairs = HashSet::new();
    /// expected_pairs.extend(vec![(1, human), (2, cat), (4, mouse), (3, dog)]);
    ///
    /// assert_eq!(pairs, expected_pairs);
    /// ```
    pub fn iter_unsorted(&self) -> impl Iterator<Item = (TopoOrder, Node)> + '_ {
        self.node_data
            .iter()
            .map(|(index, node)| (node.topo_order, index.into()))
    }

    /// Return an iterator over the descendants of a node in the graph, in
    /// an unsorted order.
    ///
    /// Accessing the nodes in an unsorted order allows for faster access
    /// using a iterative DFS search. This is opposed to the order
    /// descendants iterator which requires the use of a binary heap
    /// to order the values.
    ///
    /// # Errors
    ///
    /// This function will return an error if the given node is not present in
    /// the graph.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// use std::collections::HashSet;
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let cat = dag.add_node();
    /// let mouse = dag.add_node();
    /// let dog = dag.add_node();
    /// let human = dag.add_node();
    ///
    /// assert!(dag.add_dependency(&human, &cat).unwrap());
    /// assert!(dag.add_dependency(&human, &dog).unwrap());
    /// assert!(dag.add_dependency(&dog, &cat).unwrap());
    /// assert!(dag.add_dependency(&cat, &mouse).unwrap());
    ///
    /// let pairs = dag
    ///     .descendants_unsorted(human)
    ///     .unwrap()
    ///     .collect::<HashSet<_>>();
    ///
    /// let mut expected_pairs = HashSet::new();
    /// expected_pairs.extend(vec![(2, dog), (3, cat), (4, mouse)]);
    ///
    /// assert_eq!(pairs, expected_pairs);
    /// ```
    pub fn descendants_unsorted(
        &self,
        node: impl Borrow<Node>,
    ) -> Result<DescendantsUnsorted, Error> {
        let node = node.borrow();
        if !self.node_data.contains(node.0) {
            return Err(Error::NodeMissing);
        }

        let mut stack = Vec::new();
        let visited = FnvHashSet::default();

        // Add all children of selected node
        stack.extend(&self.node_data[node.0].children);

        Ok(DescendantsUnsorted {
            dag: self,
            stack,
            visited,
        })
    }

    /// Return an iterator over descendants of a node in the graph, in a
    /// topologically sorted order.
    ///
    /// Accessing the nodes in a sorted order requires the use of a
    /// BinaryHeap, so some performance penalty is paid there. If
    /// all is required is access to the descendants of a node, use
    /// [`IncrementalTopo::descendants_unsorted`].
    ///
    /// # Errors
    ///
    /// This function will return an error if the given node is not present in
    /// the graph.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let cat = dag.add_node();
    /// let mouse = dag.add_node();
    /// let dog = dag.add_node();
    /// let human = dag.add_node();
    ///
    /// assert!(dag.add_dependency(&human, &cat).unwrap());
    /// assert!(dag.add_dependency(&human, &dog).unwrap());
    /// assert!(dag.add_dependency(&dog, &cat).unwrap());
    /// assert!(dag.add_dependency(&cat, &mouse).unwrap());
    ///
    /// let ordered_nodes = dag.descendants(human).unwrap().collect::<Vec<_>>();
    ///
    /// assert_eq!(ordered_nodes, vec![dog, cat, mouse]);
    /// ```
    pub fn descendants(&self, node: impl Borrow<Node>) -> Result<Descendants, Error> {
        let node = node.borrow();
        if !self.node_data.contains(node.0) {
            return Err(Error::NodeMissing);
        }

        let mut queue = BinaryHeap::new();

        // Add all children of selected node
        queue.extend(
            self.node_data[node.0]
                .children
                .iter()
                .cloned()
                .map(|child_key| {
                    let child_order = self.get_node_data(child_key).topo_order;
                    (Reverse(child_order), child_key)
                }),
        );

        let visited = FnvHashSet::default();

        Ok(Descendants {
            dag: self,
            queue,
            visited,
        })
    }

    /// Compare two nodes present in the graph, topographically.
    ///
    /// # Examples
    /// ```
    /// use incremental_topo::IncrementalTopo;
    /// use std::cmp::Ordering::*;
    ///
    /// let mut dag = IncrementalTopo::new();
    ///
    /// let cat = dag.add_node();
    /// let mouse = dag.add_node();
    /// let dog = dag.add_node();
    /// let human = dag.add_node();
    /// let horse = dag.add_node();
    ///
    /// assert!(dag.add_dependency(&human, &cat).unwrap());
    /// assert!(dag.add_dependency(&human, &dog).unwrap());
    /// assert!(dag.add_dependency(&dog, &cat).unwrap());
    /// assert!(dag.add_dependency(&cat, &mouse).unwrap());
    ///
    /// assert_eq!(dag.topo_cmp(&human, &mouse), Less);
    /// assert_eq!(dag.topo_cmp(&cat, &dog), Greater);
    /// assert_eq!(dag.topo_cmp(&cat, &horse), Less);
    /// ```
    pub fn topo_cmp(&self, node_a: impl Borrow<Node>, node_b: impl Borrow<Node>) -> Ordering {
        let node_a = node_a.borrow();
        let node_b = node_b.borrow();

        self.node_data[node_a.0]
            .topo_order
            .cmp(&self.node_data[node_b.0].topo_order)
    }

    fn dfs_forward(
        &self,
        start_key: UnsafeIndex,
        visited: &mut FnvHashSet<UnsafeIndex>,
        upper_bound: TopoOrder,
    ) -> Result<FnvHashSet<UnsafeIndex>, Error> {
        let mut stack = Vec::new();
        let mut result = FnvHashSet::default();

        stack.push(start_key);

        while let Some(next_key) = stack.pop() {
            visited.insert(next_key);
            result.insert(next_key);

            for child_key in &self.get_node_data(next_key).children {
                let child_topo_order = self.get_node_data(*child_key).topo_order;

                if child_topo_order == upper_bound {
                    return Err(Error::CycleDetected);
                }

                if !visited.contains(child_key) && child_topo_order < upper_bound {
                    stack.push(*child_key);
                }
            }
        }

        Ok(result)
    }

    fn dfs_backward(
        &self,
        start_key: UnsafeIndex,
        visited: &mut FnvHashSet<UnsafeIndex>,
        lower_bound: TopoOrder,
    ) -> FnvHashSet<UnsafeIndex> {
        let mut stack = Vec::new();
        let mut result = FnvHashSet::default();

        stack.push(start_key);

        while let Some(next_key) = stack.pop() {
            visited.insert(next_key);
            result.insert(next_key);

            for parent_key in &self.get_node_data(next_key).parents {
                let parent_topo_order = self.get_node_data(*parent_key).topo_order;

                if !visited.contains(parent_key) && lower_bound < parent_topo_order {
                    stack.push(*parent_key);
                }
            }
        }

        result
    }

    fn reorder_nodes(
        &mut self,
        change_forward: FnvHashSet<UnsafeIndex>,
        change_backward: FnvHashSet<UnsafeIndex>,
    ) {
        let mut change_forward: Vec<_> = change_forward
            .into_iter()
            .map(|key| (key, self.get_node_data(key).topo_order))
            .collect();
        change_forward.sort_unstable_by_key(|pair| pair.1);

        let mut change_backward: Vec<_> = change_backward
            .into_iter()
            .map(|key| (key, self.get_node_data(key).topo_order))
            .collect();
        change_backward.sort_unstable_by_key(|pair| pair.1);

        let mut all_keys = Vec::new();
        let mut all_topo_orders = Vec::new();

        for (key, topo_order) in change_backward {
            all_keys.push(key);
            all_topo_orders.push(topo_order);
        }

        for (key, topo_order) in change_forward {
            all_keys.push(key);
            all_topo_orders.push(topo_order);
        }

        all_topo_orders.sort_unstable();

        for (key, topo_order) in all_keys.into_iter().zip(all_topo_orders.into_iter()) {
            self.node_data
                .get_unknown_gen_mut(key.0)
                .unwrap()
                .0
                .topo_order = topo_order;
        }
    }

    fn get_node_data(&self, idx: UnsafeIndex) -> &NodeData {
        self.node_data.get_unknown_gen(idx.0).unwrap().0
    }
}

/// An iterator over the descendants of a node in the graph, which outputs the
/// nodes in an unsorted order with their topological ranking.
///
/// # Examples
/// ```
/// use incremental_topo::IncrementalTopo;
/// use std::collections::HashSet;
/// let mut dag = IncrementalTopo::new();
///
/// let cat = dag.add_node();
/// let mouse = dag.add_node();
/// let dog = dag.add_node();
/// let human = dag.add_node();
///
/// assert!(dag.add_dependency(&human, &cat).unwrap());
/// assert!(dag.add_dependency(&human, &dog).unwrap());
/// assert!(dag.add_dependency(&dog, &cat).unwrap());
/// assert!(dag.add_dependency(&cat, &mouse).unwrap());
///
/// let pairs = dag
///     .descendants_unsorted(human)
///     .unwrap()
///     .collect::<HashSet<_>>();
///
/// let mut expected_pairs = HashSet::new();
/// expected_pairs.extend(vec![(2, dog), (3, cat), (4, mouse)]);
///
/// assert_eq!(pairs, expected_pairs);
/// ```
#[derive(Debug)]
pub struct DescendantsUnsorted<'a> {
    dag: &'a IncrementalTopo,
    stack: Vec<UnsafeIndex>,
    visited: FnvHashSet<UnsafeIndex>,
}

impl<'a> Iterator for DescendantsUnsorted<'a> {
    type Item = (TopoOrder, Node);

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(key) = self.stack.pop() {
            if self.visited.contains(&key) {
                continue;
            } else {
                self.visited.insert(key);
            }

            let (node_data, index) = self.dag.node_data.get_unknown_gen(key.0).unwrap();

            let order = node_data.topo_order;

            self.stack.extend(&node_data.children);

            return Some((order, index.into()));
        }

        None
    }
}

/// An iterator over the descendants of a node in the graph, which outputs the
/// nodes in a sorted order by their topological ranking.
///
/// # Examples
/// ```
/// use incremental_topo::IncrementalTopo;
/// let mut dag = IncrementalTopo::new();
///
/// let cat = dag.add_node();
/// let mouse = dag.add_node();
/// let dog = dag.add_node();
/// let human = dag.add_node();
///
/// assert!(dag.add_dependency(&human, &cat).unwrap());
/// assert!(dag.add_dependency(&human, &dog).unwrap());
/// assert!(dag.add_dependency(&dog, &cat).unwrap());
/// assert!(dag.add_dependency(&cat, &mouse).unwrap());
///
/// let ordered_nodes = dag.descendants(human).unwrap().collect::<Vec<_>>();
///
/// assert_eq!(ordered_nodes, vec![dog, cat, mouse]);
/// ```
#[derive(Debug)]
pub struct Descendants<'a> {
    dag: &'a IncrementalTopo,
    queue: BinaryHeap<(Reverse<TopoOrder>, UnsafeIndex)>,
    visited: FnvHashSet<UnsafeIndex>,
}

impl<'a> Iterator for Descendants<'a> {
    type Item = Node;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            if let Some((_, key)) = self.queue.pop() {
                if self.visited.contains(&key) {
                    continue;
                } else {
                    self.visited.insert(key);
                }

                let (node_data, index) = self.dag.node_data.get_unknown_gen(key.0).unwrap();

                for child in &node_data.children {
                    let order = self.dag.get_node_data(*child).topo_order;
                    self.queue.push((Reverse(order), *child))
                }

                return Some(index.into());
            } else {
                return None;
            }
        }
    }
}

#[cfg(test)]
mod tests {
    extern crate pretty_env_logger;
    use super::*;

    fn get_basic_dag() -> Result<([Node; 7], IncrementalTopo), Error> {
        let mut dag = IncrementalTopo::new();

        let dog = dag.add_node();
        let cat = dag.add_node();
        let mouse = dag.add_node();
        let lion = dag.add_node();
        let human = dag.add_node();
        let gazelle = dag.add_node();
        let grass = dag.add_node();

        assert_eq!(dag.len(), 7);

        dag.add_dependency(lion, human)?;
        dag.add_dependency(lion, gazelle)?;

        dag.add_dependency(human, dog)?;
        dag.add_dependency(human, cat)?;

        dag.add_dependency(dog, cat)?;
        dag.add_dependency(cat, mouse)?;

        dag.add_dependency(gazelle, grass)?;

        dag.add_dependency(mouse, grass)?;

        Ok(([dog, cat, mouse, lion, human, gazelle, grass], dag))
    }

    #[test]
    fn add_nodes_basic() {
        let mut dag = IncrementalTopo::new();

        let dog = dag.add_node();
        let cat = dag.add_node();
        let mouse = dag.add_node();
        let lion = dag.add_node();
        let human = dag.add_node();

        assert_eq!(dag.len(), 5);
        assert!(dag.contains_node(&dog));
        assert!(dag.contains_node(&cat));
        assert!(dag.contains_node(&mouse));
        assert!(dag.contains_node(&lion));
        assert!(dag.contains_node(&human));
    }

    #[test]
    fn delete_nodes() {
        let mut dag = IncrementalTopo::new();

        let dog = dag.add_node();
        let cat = dag.add_node();
        let human = dag.add_node();

        assert_eq!(dag.len(), 3);

        assert!(dag.contains_node(&dog));
        assert!(dag.contains_node(&cat));
        assert!(dag.contains_node(&human));

        assert!(dag.delete_node(human));
        assert_eq!(dag.len(), 2);
        assert!(!dag.contains_node(&human));
    }

    #[test]
    fn reject_cycle() {
        let mut dag = IncrementalTopo::new();

        let n1 = dag.add_node();
        let n2 = dag.add_node();
        let n3 = dag.add_node();

        assert_eq!(dag.len(), 3);

        assert!(dag.add_dependency(&n1, &n2).is_ok());
        assert!(dag.add_dependency(&n2, &n3).is_ok());

        assert!(dag.add_dependency(&n3, &n1).is_err());
        assert!(dag.add_dependency(&n1, &n1).is_err());
    }

    #[test]
    fn get_children_unordered() {
        let ([dog, cat, mouse, _, human, _, grass], dag) = get_basic_dag().unwrap();

        let children: FnvHashSet<_> = dag
            .descendants_unsorted(&human)
            .unwrap()
            .map(|(_, v)| v)
            .collect();

        let mut expected_children = FnvHashSet::default();
        expected_children.extend(vec![dog, cat, mouse, grass]);

        assert_eq!(children, expected_children);

        let ordered_children: Vec<_> = dag.descendants(human).unwrap().collect();
        assert_eq!(ordered_children, vec![dog, cat, mouse, grass])
    }

    #[test]
    fn topo_order_values_no_gaps() {
        let ([.., lion, _, _, _], dag) = get_basic_dag().unwrap();

        let topo_orders: FnvHashSet<_> = dag
            .descendants_unsorted(lion)
            .unwrap()
            .map(|p| p.0)
            .collect();

        assert_eq!(topo_orders, (2..=7).collect::<FnvHashSet<_>>())
    }

    #[test]
    fn readme_example() {
        let mut dag = IncrementalTopo::new();

        let cat = dag.add_node();
        let dog = dag.add_node();
        let human = dag.add_node();

        assert_eq!(dag.len(), 3);

        dag.add_dependency(&human, &dog).unwrap();
        dag.add_dependency(&human, &cat).unwrap();
        dag.add_dependency(&dog, &cat).unwrap();

        let animal_order: Vec<_> = dag.descendants(&human).unwrap().collect();

        assert_eq!(animal_order, vec![dog, cat]);
    }

    #[test]
    fn unordered_iter() {
        let mut dag = IncrementalTopo::new();

        let cat = dag.add_node();
        let mouse = dag.add_node();
        let dog = dag.add_node();
        let human = dag.add_node();

        assert!(dag.add_dependency(&human, &cat).unwrap());
        assert!(dag.add_dependency(&human, &dog).unwrap());
        assert!(dag.add_dependency(&dog, &cat).unwrap());
        assert!(dag.add_dependency(&cat, &mouse).unwrap());

        let pairs = dag
            .descendants_unsorted(&human)
            .unwrap()
            .collect::<FnvHashSet<_>>();

        let mut expected_pairs = FnvHashSet::default();
        expected_pairs.extend(vec![(2, dog), (3, cat), (4, mouse)]);

        assert_eq!(pairs, expected_pairs);
    }

    #[test]
    fn topo_cmp() {
        use std::cmp::Ordering::*;
        let mut dag = IncrementalTopo::new();

        let cat = dag.add_node();
        let mouse = dag.add_node();
        let dog = dag.add_node();
        let human = dag.add_node();
        let horse = dag.add_node();

        assert!(dag.add_dependency(&human, &cat).unwrap());
        assert!(dag.add_dependency(&human, &dog).unwrap());
        assert!(dag.add_dependency(&dog, &cat).unwrap());
        assert!(dag.add_dependency(&cat, &mouse).unwrap());

        assert_eq!(dag.topo_cmp(&human, &mouse), Less);
        assert_eq!(dag.topo_cmp(&cat, &dog), Greater);
        assert_eq!(dag.topo_cmp(&cat, &horse), Less);
    }
}