1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
use crate::registers::Register;
use crate::{helpers, MaskEnableFlags, OperatingMode};
use core::cell::RefCell;
use hal::i2c::I2c;
use ohms::Voltage;

const RESET_FLAG: u16 = 0x8000;
const CHANNEL_1_FLAG: u16 = 0x4000;
const CHANNEL_2_FLAG: u16 = 0x2000;
const CHANNEL_3_FLAG: u16 = 0x1000;

const SHUNT_VOLTAGE_SCALE_FACTOR: i32 = 40;
const BUS_VOLTAGE_SCALE_FACTOR: i32 = 8000;

/// Device driver for the INA3221 current and power monitor
///
/// The [INA3221] is a triple-channel shunt and bus voltage monitor that can be used to measure
/// current and power consumption from up to three loads.
///
/// It is very similar to the INA219, but with a few additional features and a different register
/// layout.
///
/// # Configuration
///
/// The INA3221 can be configured to use different operating modes and alert thresholds.
///
/// It is important to note that the INA3221 will retain configuration settings unless the device is
/// reset or power cycled. You can manually reset the device by calling the `reset()` method.
///
/// # Channels
///
/// The INA3221 has three channels, each of which can be used to measure the current and power
/// consumption of a load. The voltage should not exceed 26V and the maximum current draw should
/// not exceed 3.2A (per-channel).
///
/// The INA3221 can be configured to enable or disable each channel individually.
/// By default, all three channels are enabled.
///
/// The last measurements are retained in the device's registers, even if the channel
/// is disabled. This means that the last measurements will be returned when the channel is read.
///
/// Channel index is zero-based, so channel 1 is index 0, channel 2 is index 1, and channel 3 is index 2.
/// Attempting to use a channel index outside of the range of 0-2 will use the third channel.
///
/// # Shunt Resistor
///
/// The INA3221 requires a shunt resistor to be connected to each channel. The value of this resistor
/// is used to calculate the current draw from the load. The shunt resistor should be as small as
/// possible, but large enough to handle the maximum current draw of the load. The shunt resistor
/// should be connected between the load and the INA3221's shunt voltage measurement pin.
///
/// A common value for the shunt resistor is **0.1 ohms**, which can handle up to 3.2A of current draw.
///
/// # Current Calculation
///
/// Unlike the INA219, the INA3221 does not store the shunt resistor value in the device,
/// and so the current draw must be calculated manually instead of using the device's built-in
/// current calculation and register.
///
/// The bonus of this is that the shunt resistor value can be changed without the need to
/// calibrate the INA3221, only the firmware needs to be updated.
///
/// The current draw can be calculated using Ohm's Law:
/// I = V / R
///
/// The [`ohms`](https://github.com/UnderLogic/ohms) crate is re-exported by this crate,
/// so you can use the defined unit types to make the calculation easier to read and keep
/// track of the denominator units.
///
/// ## Example
///
/// ```rust
/// // Assume a shunt resistor value of 0.1 ohms
/// let shunt_resistor = 100u32.milli_ohms();
/// let shunt_voltage = ina.get_shunt_voltage(0).unwrap();
/// let current_milliamps = shunt_voltage.milli_volts() / shunt_resistor.ohms();
/// ```
///
/// # Power Calculation
///
/// Similar to the current calculation, the power draw can be calculated using Ohm's Law:
/// P = I * V
///
/// Again, it is important to be mindful of the units used when calculating the power draw.
///
/// ## Example
///
/// ```rust
/// // Assume a shunt resistor value of 0.1 ohms
/// let shunt_resistor = 100u32.milli_ohms();
/// let shunt_voltage = ina.get_shunt_voltage(0).unwrap();
/// let bus_voltage = ina.get_bus_voltage(0).unwrap();
///
/// // Can use the '+' operator to add the shunt and bus voltage structs together
/// let load_voltage = bus_voltage + shunt_voltage;
///
/// let current_milliamps = shunt_voltage.milli_volts() / shunt_resistor.ohms();
/// let power_milliwatts = current_milliamps * load_voltage.volts();
/// ```
///
/// # Operating Mode
///
/// The INA3221 can be configured to operate in one of three modes:
///
/// - Power-down
/// - Triggered
/// - Continuous
///
/// The default operating mode is continuous, which means that the device will continuously
/// measure the shunt and bus voltages and store the results in the device's registers.
/// Any disabled channels will not be measured and are skipped from the measurement cycle.
///
/// When triggered mode is set, the device will take a one-time measurement of the shunt and bus
/// voltages, and then enter a power-down state. The device will remain in this state until
/// the operating mode is changed to either continuous or triggered (again).
///
/// The power-down mode will disable all measurements and put the device into a low-power state.
/// The last measurement results will be stored in the device's registers and can be read even
/// while powered down.
///
/// # Alerts
/// The INA3221 can be configured to trigger various alerts based on the various measurements.
///
/// The following alerts are available:
///
/// - Over-current (Critical)
/// - Over-current (Warning)
/// - Under-voltage (PowerValid)
/// - Over-voltage (PowerValid)
///
/// The [`ohms`](https://github.com/UnderLogic/ohms) crate is re-exported by this crate,
/// so you can use the defined unit types to make the calculation easier to read and keep
/// track of the denominator units.
///
/// # Example
///
/// ```rust
/// let max_current = 1u32.amps();  // 1A
/// let shunt_resistor = 100u32.ohms(); // 0.1 ohms
///
/// // Calculate the maximum voltage that can be measured on the shunt using Ohm's Law (V = I * R)
/// let max_voltage = max_current.milli_amps() * shunt_resistor.ohms(); // 100mV
///
/// // Set the critical alert limit for channel 1 to raise when exceeding 1A of current draw
/// ina.set_critical_alert_limit(0, max_voltage.milli_volts()).unwrap();
/// ```
///
/// Note that these limits are based on the shunt voltage, **not** the load voltage.
///
/// [INA3221]: https://www.ti.com/lit/ds/symlink/ina3221.pdf
///
pub struct INA3221<I2C> {
    i2c: RefCell<I2C>,
    /// I2C address of the INA3221
    pub address: u8,
}

impl<I2C, E> INA3221<I2C>
where
    I2C: I2c<Error = E>,
{
    /// Create a new INA3221 driver instance from an I2C peripheral on a specific address
    ///
    /// This is typically 0x40, 0x41, or 0x42 depending on the A0 pin setting
    pub fn new(i2c: I2C, address: u8) -> INA3221<I2C> {
        INA3221 {
            i2c: RefCell::new(i2c),
            address,
        }
    }

    /// Gets the active configuration bits from the INA3221
    pub fn get_configuration(&self) -> Result<u16, E> {
        self.read_register(Register::Configuration)
    }

    /// Gets the operating mode of the INA3221
    pub fn get_mode(&self) -> Result<OperatingMode, E> {
        let config = self.get_configuration()?;
        let mode = match config & 0x7 {
            0x01 => OperatingMode::Triggered,
            0x02 => OperatingMode::Triggered,
            0x03 => OperatingMode::Triggered,
            0x05 => OperatingMode::Continuous,
            0x06 => OperatingMode::Continuous,
            0x07 => OperatingMode::Continuous,
            _ => OperatingMode::PowerDown,
        };

        Ok(mode)
    }

    /// Sets the operating mode of the INA3221
    ///
    /// Setting the mode to `OperatingMode::Triggered` will trigger a measurement cycle
    pub fn set_mode(&mut self, mode: OperatingMode) -> Result<(), E> {
        let config = self.get_configuration()?;
        let new_config = (config & 0xFFF8) | mode as u16;
        self.write_register(Register::Configuration, new_config)
    }

    /// Gets the enabled status for all three channels, storing them in an array
    ///
    /// This is useful for iterating over all channels without having to call
    /// `is_channel_enabled` multiple times
    pub fn get_channels_enabled(&self, statuses: &mut [bool]) -> Result<(), E> {
        let config = self.get_configuration()?;
        statuses[0] = config & CHANNEL_1_FLAG > 0;
        statuses[1] = config & CHANNEL_2_FLAG > 0;
        statuses[2] = config & CHANNEL_3_FLAG > 0;
        Ok(())
    }

    /// Sets the enabled status for all three channels
    ///
    /// This is useful for enabling or disabling all channels at once without having to call
    /// `set_channel_enabled` multiple times
    ///
    /// Disabling a channel prevents it from being measured, but it can still be read
    /// for the last measurement result
    pub fn set_channels_enabled(&mut self, enabled: &[bool]) -> Result<(), E> {
        let config = self.get_configuration()?;
        let mut new_config = config & 0xFFF8;
        if enabled[0] {
            new_config |= CHANNEL_1_FLAG;
        }
        if enabled[1] {
            new_config |= CHANNEL_2_FLAG;
        }
        if enabled[2] {
            new_config |= CHANNEL_3_FLAG;
        }
        self.write_register(Register::Configuration, new_config)
    }

    /// Checks if a monitoring channel is enabled on the INA3221
    ///
    /// A disabled channel can still be read, but will not be measured until it is re-enabled
    pub fn is_channel_enabled(&self, channel: u8) -> Result<bool, E> {
        let flag = match channel {
            0 => CHANNEL_1_FLAG,
            1 => CHANNEL_2_FLAG,
            _ => CHANNEL_3_FLAG,
        };

        let config = self.get_configuration()?;
        Ok(config & flag > 0)
    }

    /// Enables or disables a monitoring channel on the INA3221
    ///
    /// Disabling a channel prevents it from being measured, but it can still be read
    /// for the last measurement result
    pub fn set_channel_enabled(&mut self, channel: u8, enabled: bool) -> Result<(), E> {
        let flag = match channel {
            0 => CHANNEL_1_FLAG,
            1 => CHANNEL_2_FLAG,
            _ => CHANNEL_3_FLAG,
        };

        let config = self.get_configuration()?;

        // Toggle the channel bit in the configuration
        match enabled {
            true => self.write_register(Register::Configuration, config | flag),
            false => self.write_register(Register::Configuration, config & !flag),
        }
    }

    /// Gets the shunt voltage of a specific monitoring channel
    pub fn get_shunt_voltage(&self, channel: u8) -> Result<Voltage, E> {
        let register = match channel {
            0 => Register::ShuntVoltage1,
            1 => Register::ShuntVoltage2,
            _ => Register::ShuntVoltage3,
        };

        // LSB = 40uV, meaning the value is downscaled 40:1
        let raw_value = self.read_register(register)?;
        let microvolts = helpers::convert_from_12bit_signed(raw_value) * SHUNT_VOLTAGE_SCALE_FACTOR;
        Ok(Voltage::from_micro_volts(microvolts))
    }

    /// Gets the bus voltage of a specific monitoring channel
    pub fn get_bus_voltage(&self, channel: u8) -> Result<Voltage, E> {
        let register = match channel {
            0 => Register::BusVoltage1,
            1 => Register::BusVoltage2,
            _ => Register::BusVoltage3,
        };

        // LSB = 8mV (8000uV), meaning the value is downscaled 8:1
        let raw_value = self.read_register(register)?;
        let microvolts = helpers::convert_from_12bit_signed(raw_value) * BUS_VOLTAGE_SCALE_FACTOR;
        Ok(Voltage::from_micro_volts(microvolts))
    }

    /// Gets the critical alert limit of a specific monitoring channel
    ///
    /// This is the shunt voltage limit that will trigger a critical alert on that channel
    pub fn get_critical_alert_limit(&self, channel: u8) -> Result<Voltage, E> {
        let register = match channel {
            0 => Register::CriticalAlertLimit1,
            1 => Register::CriticalAlertLimit2,
            _ => Register::CriticalAlertLimit3,
        };

        // LSB = 40uV, meaning the value is downscaled 40:1
        let raw_value = self.read_register(register)?;
        let microvolts = helpers::convert_from_12bit_signed(raw_value) * SHUNT_VOLTAGE_SCALE_FACTOR;
        Ok(Voltage::from_micro_volts(microvolts))
    }

    /// Sets the critical alert limit for a specific monitoring channel
    ///
    /// This is the shunt voltage limit that will trigger a critical alert on that channel
    pub fn set_critical_alert_limit(
        &mut self,
        channel: u8,
        voltage_limit: Voltage,
    ) -> Result<(), E> {
        let register = match channel {
            0 => Register::CriticalAlertLimit1,
            1 => Register::CriticalAlertLimit2,
            _ => Register::CriticalAlertLimit3,
        };

        // LSB = 40uV, meaning the value is downscaled 40:1
        let raw_value = voltage_limit.micro_volts() / SHUNT_VOLTAGE_SCALE_FACTOR;
        self.write_register(register, helpers::convert_to_12bit_signed(raw_value))
    }

    /// Sets the critical alert latch behavior for the warning alert pin
    ///
    /// If enabled, the critical alert pin will latch until the warning alert is cleared
    pub fn set_critical_alert_latch(&mut self, enabled: bool) -> Result<(), E> {
        self.set_flag(MaskEnableFlags::CRITICAL_ALERT_LATCH, enabled)
    }

    /// Gets the warning alert limit of a specific monitoring channel
    ///
    /// This is the shunt voltage limit that will trigger a warning alert on that channel
    pub fn get_warning_alert_limit(&self, channel: u8) -> Result<Voltage, E> {
        let register = match channel {
            0 => Register::WarningAlertLimit1,
            1 => Register::WarningAlertLimit2,
            _ => Register::WarningAlertLimit3,
        };

        // LSB = 40uV, meaning the value is downscaled 40:1
        let raw_value = self.read_register(register)?;
        let microvolts = helpers::convert_from_12bit_signed(raw_value) * SHUNT_VOLTAGE_SCALE_FACTOR;
        Ok(Voltage::from_micro_volts(microvolts))
    }

    /// Sets the warning alert limit for a specific monitoring channel
    ///
    /// This is the shunt voltage limit that will trigger a warning alert on that channel
    pub fn set_warning_alert_limit(
        &mut self,
        channel: u8,
        voltage_limit: Voltage,
    ) -> Result<(), E> {
        let register = match channel {
            0 => Register::WarningAlertLimit1,
            1 => Register::WarningAlertLimit2,
            _ => Register::WarningAlertLimit3,
        };

        // LSB = 40uV, meaning the value is downscaled 40:1
        let raw_value = voltage_limit.micro_volts() / SHUNT_VOLTAGE_SCALE_FACTOR;
        self.write_register(register, helpers::convert_to_12bit_signed(raw_value))
    }

    /// Sets the warning alert latch behavior for the warning alert pin
    ///
    /// If enabled, the warning alert pin will latch until the warning alert is cleared
    pub fn set_warning_alert_latch(&mut self, enabled: bool) -> Result<(), E> {
        self.set_flag(MaskEnableFlags::WARNING_ALERT_LATCH, enabled)
    }

    /// Gets the power valid limits of **all** enabled monitoring channels
    ///
    /// These are the lower and upper limits (respectively) for the bus voltage that will trigger
    /// a power valid alert on all enabled channels
    pub fn get_power_valid_limits(&self) -> Result<(Voltage, Voltage), E> {
        // LSB = 8mV (8000uV), meaning the value is downscaled 8:1
        let lower_raw_value = self.read_register(Register::PowerValidLowerLimit)?;
        let upper_raw_value = self.read_register(Register::PowerValidUpperLimit)?;

        let lower_microvolts =
            helpers::convert_from_12bit_signed(lower_raw_value) * BUS_VOLTAGE_SCALE_FACTOR;
        let upper_microvolts =
            helpers::convert_from_12bit_signed(upper_raw_value) * BUS_VOLTAGE_SCALE_FACTOR;

        Ok((
            Voltage::from_micro_volts(lower_microvolts),
            Voltage::from_micro_volts(upper_microvolts),
        ))
    }

    /// Sets the power valid limits for **all** enabled monitoring channels
    ///
    /// These are the upper and lower limits for the bus voltage that will trigger a power valid alert
    /// on all enabled channels
    pub fn set_power_valid_limits(
        &mut self,
        lower_limit: Voltage,
        upper_limit: Voltage,
    ) -> Result<(), E> {
        // LSB = 8mV (8000uV), meaning the value is downscaled 8:1
        let lower_raw_value = lower_limit.micro_volts() / BUS_VOLTAGE_SCALE_FACTOR;
        let upper_raw_value = upper_limit.micro_volts() / BUS_VOLTAGE_SCALE_FACTOR;

        self.write_register(
            Register::PowerValidLowerLimit,
            helpers::convert_to_12bit_signed(lower_raw_value),
        )?;

        self.write_register(
            Register::PowerValidUpperLimit,
            helpers::convert_to_12bit_signed(upper_raw_value),
        )?;

        Ok(())
    }

    /// Reads the alert flags from the INA3221
    ///
    /// If `preserve` is set to `true`, the flags will not be cleared after reading
    pub fn read_alert_flags(&mut self, preserve: bool) -> Result<MaskEnableFlags, E> {
        self.read_flags(preserve)
    }

    /// Gets the manufacturer ID from the INA3221
    ///
    /// This value is always 0x5449 ('TI' in ASCII), or at least should be for genuine INA3221s
    pub fn get_manufacturer_id(&self) -> Result<u16, E> {
        self.read_register(Register::ManufacturerId)
    }

    /// Gets the die ID from the INA3221
    ///
    /// This value is always 0x3220, or at least should be for genuine INA3221s
    pub fn get_die_id(&self) -> Result<u16, E> {
        self.read_register(Register::DieId)
    }

    /// Resets the INA3221
    ///
    /// This clears all configuration bits and sets the default configuration
    pub fn reset(&mut self) -> Result<(), E> {
        let config = self.read_register(Register::Configuration)?;
        self.write_register(Register::Configuration, config | RESET_FLAG)
    }

    fn select_register(&self, register: Register) -> Result<(), E> {
        self.i2c.borrow_mut().write(self.address, &[register as u8])
    }

    fn read_register(&self, register: Register) -> Result<u16, E> {
        self.select_register(register)?;

        let mut buffer: [u8; 2] = [0x00; 2];
        self.i2c.borrow_mut().read(self.address, &mut buffer)?;

        // Convert from big endian 16-bit word
        let word = ((buffer[0] as u16) << 8) + buffer[1] as u16;
        Ok(word)
    }

    fn write_register(&mut self, register: Register, value: u16) -> Result<(), E> {
        // Convert from little endian to big endian
        let msb = ((value >> 8) & 0xFF) as u8;
        let lsb = (value & 0xFF) as u8;

        let buffer: [u8; 3] = [register as u8, msb, lsb];
        self.i2c.borrow_mut().write(self.address, &buffer)?;
        Ok(())
    }

    fn read_flags(&mut self, preserve: bool) -> Result<MaskEnableFlags, E> {
        let flags = self.read_register(Register::MaskEnable)?;
        let flags = MaskEnableFlags::from_bits(flags).unwrap();

        if preserve {
            self.write_register(Register::MaskEnable, flags.bits())?;
        }
        Ok(flags)
    }

    fn set_flag(&mut self, flag: MaskEnableFlags, enabled: bool) -> Result<(), E> {
        let flags = self.read_register(Register::MaskEnable)?;
        let mut new_flags = MaskEnableFlags::from_bits(flags).unwrap();
        new_flags.set(flag, enabled);
        self.write_register(Register::MaskEnable, new_flags.bits())
    }
}