1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
use crate::avl::{Iter, Tree};
use std::{
    borrow::Borrow,
    cmp::{Eq, Ord, Ordering, PartialEq, PartialOrd},
    default::Default,
    fmt::{self, Debug, Formatter},
    hash::{Hash, Hasher},
    iter::FromIterator,
    ops::{Bound, Index},
};

/// This Map uses a similar strategy to BTreeMap to ensure cache
/// efficient performance on modern hardware while still providing
/// log(N) get, insert, and remove operations.
///
/// For good performance, it is very important to understand
/// that clone is a fundamental operation, it needs to be fast
/// for your key and data types, because it's going to be
/// called a lot whenever you change the map.
///
/// # Why
///
/// 1. Multiple threads can read this structure even while one thread
/// is updating it. Using a library like arc_swap you can avoid ever
/// blocking readers.
///
/// 2. Snapshotting this structure is free.
///
/// # Examples
/// ```
/// use std::string::String;
/// use self::immutable_chunkmap::map::Map;
///
/// let m =
///    Map::new()
///    .insert(String::from("1"), 1).0
///    .insert(String::from("2"), 2).0
///    .insert(String::from("3"), 3).0;
///
/// assert_eq!(m.get("1"), Option::Some(&1));
/// assert_eq!(m.get("2"), Option::Some(&2));
/// assert_eq!(m.get("3"), Option::Some(&3));
/// assert_eq!(m.get("4"), Option::None);
///
/// for (k, v) in &m {
///   println!("key {}, val: {}", k, v)
/// }
/// ```
#[derive(Clone)]
pub struct Map<K: Ord + Clone, V: Clone>(Tree<K, V>);

impl<K, V> Hash for Map<K, V>
where
    K: Hash + Ord + Clone,
    V: Hash + Clone,
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.hash(state)
    }
}

impl<K, V> Default for Map<K, V>
where
    K: Ord + Clone,
    V: Clone,
{
    fn default() -> Map<K, V> {
        Map::new()
    }
}

impl<K, V> PartialEq for Map<K, V>
where
    K: PartialEq + Ord + Clone,
    V: PartialEq + Clone,
{
    fn eq(&self, other: &Map<K, V>) -> bool {
        self.0 == other.0
    }
}

impl<K, V> Eq for Map<K, V>
where
    K: Eq + Ord + Clone,
    V: Eq + Clone,
{
}

impl<K, V> PartialOrd for Map<K, V>
where
    K: Ord + Clone,
    V: PartialOrd + Clone,
{
    fn partial_cmp(&self, other: &Map<K, V>) -> Option<Ordering> {
        self.0.partial_cmp(&other.0)
    }
}

impl<K, V> Ord for Map<K, V>
where
    K: Ord + Clone,
    V: Ord + Clone,
{
    fn cmp(&self, other: &Map<K, V>) -> Ordering {
        self.0.cmp(&other.0)
    }
}

impl<K, V> Debug for Map<K, V>
where
    K: Debug + Ord + Clone,
    V: Debug + Clone,
{
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl<'a, Q, K, V> Index<&'a Q> for Map<K, V>
where
    Q: Ord,
    K: Ord + Clone + Borrow<Q>,
    V: Clone,
{
    type Output = V;
    fn index(&self, k: &Q) -> &V {
        self.get(k).expect("element not found for key")
    }
}

impl<K, V> FromIterator<(K, V)> for Map<K, V>
where
    K: Ord + Clone,
    V: Clone,
{
    fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self {
        Map::new().insert_many(iter)
    }
}

impl<'a, K, V> IntoIterator for &'a Map<K, V>
where
    K: 'a + Borrow<K> + Ord + Clone,
    V: 'a + Clone,
{
    type Item = (&'a K, &'a V);
    type IntoIter = Iter<'a, K, K, V>;
    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

impl<K, V> Map<K, V>
where
    K: Ord + Clone,
    V: Clone,
{
    /// Create a new empty map
    pub fn new() -> Self {
        Map(Tree::new())
    }

    /// This will insert many elements at once, and is
    /// potentially a lot faster than inserting one by one,
    /// especially if the data is sorted. It is just a wrapper
    /// around the more general update_many method.
    ///
    /// #Examples
    ///```
    /// use self::immutable_chunkmap::map::Map;
    ///
    /// let mut v = vec![(1, 3), (10, 1), (-12, 2), (44, 0), (50, -1)];
    /// v.sort_unstable_by_key(|&(k, _)| k);
    ///
    /// let m = Map::new().insert_many(v.iter().map(|(k, v)| (*k, *v)));
    ///
    /// for (k, v) in &v {
    ///   assert_eq!(m.get(k), Option::Some(v))
    /// }
    /// ```
    pub fn insert_many<E: IntoIterator<Item = (K, V)>>(&self, elts: E) -> Self {
        Map(self.0.insert_many(elts))
    }

    /// This method updates multiple bindings in one call. Given an
    /// iterator of an arbitrary type (Q, D), where Q is any borrowed
    /// form of K, an update function taking Q, D, the current binding
    /// in the map, if any, and producing the new binding, if any,
    /// this method will produce a new map with updated bindings of
    /// many elements at once. It will skip intermediate node
    /// allocations where possible. If the data in elts is sorted, it
    /// will be able to skip many more intermediate allocations, and
    /// can produce a speedup of about 10x compared to
    /// inserting/updating one by one. In any case it should always be
    /// faster than inserting elements one by one, even with random
    /// unsorted keys.
    ///
    /// #Examples
    /// ```
    /// use std::iter::FromIterator;
    /// use self::immutable_chunkmap::map::Map;
    ///
    /// let m = Map::from_iter((0..4).map(|k| (k, k)));
    /// let m = m.update_many(
    ///     (0..4).map(|x| (x, ())),
    ///     |k, (), cur| cur.map(|(_, c)| (k, c + 1))
    /// );
    /// assert_eq!(
    ///     m.into_iter().map(|(k, v)| (*k, *v)).collect::<Vec<_>>(),
    ///     vec![(0, 1), (1, 2), (2, 3), (3, 4)]
    /// );
    /// ```
    pub fn update_many<Q, D, E, F>(&self, elts: E, mut f: F) -> Self
    where
        E: IntoIterator<Item = (Q, D)>,
        Q: Ord,
        K: Borrow<Q>,
        F: FnMut(Q, D, Option<(&K, &V)>) -> Option<(K, V)>,
    {
        Map(self.0.update_many(elts, &mut f))
    }

    /// return a new map with (k, v) inserted into it. If k
    /// already exists in the old map, the old binding will be
    /// returned, and the new map will contain the new
    /// binding. In fact this method is just a wrapper around
    /// update.
    pub fn insert(&self, k: K, v: V) -> (Self, Option<V>) {
        let (root, prev) = self.0.insert(k, v);
        (Map(root), prev)
    }

    /// return a new map with the binding for q, which can be any
    /// borrowed form of k, updated to the result of f. If f returns
    /// None, the binding will be removed from the new map, otherwise
    /// it will be inserted. This function is more efficient than
    /// calling `get` and then `insert`, since it makes only one tree
    /// traversal instead of two. This method runs in log(N) time and
    /// space where N is the size of the map.
    ///
    /// # Examples
    /// ```
    /// use self::immutable_chunkmap::map::Map;
    ///
    /// let (m, _) = Map::new().update(0, 0, |k, d, _| Some((k, d)));
    /// let (m, _) = m.update(1, 1, |k, d, _| Some((k, d)));
    /// let (m, _) = m.update(2, 2, |k, d, _| Some((k, d)));
    /// assert_eq!(m.get(&0), Some(&0));
    /// assert_eq!(m.get(&1), Some(&1));
    /// assert_eq!(m.get(&2), Some(&2));
    ///
    /// let (m, _) = m.update(0, (), |k, (), v| v.map(move |(_, v)| (k, v + 1)));
    /// assert_eq!(m.get(&0), Some(&1));
    /// assert_eq!(m.get(&1), Some(&1));
    /// assert_eq!(m.get(&2), Some(&2));
    ///
    /// let (m, _) = m.update(1, (), |_, (), _| None);
    /// assert_eq!(m.get(&0), Some(&1));
    /// assert_eq!(m.get(&1), None);
    /// assert_eq!(m.get(&2), Some(&2));
    /// ```
    pub fn update<Q, D, F>(&self, q: Q, d: D, mut f: F) -> (Self, Option<V>)
    where
        Q: Ord,
        K: Borrow<Q>,
        F: FnMut(Q, D, Option<(&K, &V)>) -> Option<(K, V)>,
    {
        let (root, prev) = self.0.update(q, d, &mut f);
        (Map(root), prev)
    }

    /// Merge two maps together. Bindings that exist in both maps will
    /// be passed to f, which may elect to remove the binding by
    /// returning None. This function runs in O(log(n) + m) time and
    /// space, where n is the size of the largest map, and m is the
    /// number of intersecting chunks. It will never be slower than
    /// calling update_many on the first map with an iterator over the
    /// second, and will be significantly faster if the intersection
    /// is minimal or empty.
    ///
    /// # Examples
    /// ```
    /// use std::iter::FromIterator;
    /// use self::immutable_chunkmap::map::Map;
    ///
    /// let m0 = Map::from_iter((0..10).map(|k| (k, 1)));
    /// let m1 = Map::from_iter((10..20).map(|k| (k, 1)));
    /// let m2 = m0.union(&m1, |_k, _v0, _v1| panic!("no intersection expected"));
    ///
    /// for i in 0..20 {
    ///     assert!(m2.get(&i).is_some())
    /// }
    ///
    /// let m3 = Map::from_iter((5..9).map(|k| (k, 1)));
    /// let m4 = m3.union(&m2, |_k, v0, v1| Some(v0 + v1));
    ///
    /// for i in 0..20 {
    ///    assert!(
    ///        *m4.get(&i).unwrap() ==
    ///        *m3.get(&i).unwrap_or(&0) + *m2.get(&i).unwrap_or(&0)
    ///    )
    /// }
    /// ```
    pub fn union<F>(&self, other: &Map<K, V>, mut f: F) -> Self
    where
        F: FnMut(&K, &V, &V) -> Option<V>,
    {
        Map(Tree::union(&self.0, &other.0, &mut f))
    }

    /// Produce a map containing the mapping over F of the
    /// intersection (by key) of two maps. The function f runs on each
    /// intersecting element, and has the option to omit elements from
    /// the intersection by returning None, or change the value any
    /// way it likes. Runs in O(log(N) + M) time and space where N is
    /// the size of the smallest map, and M is the number of
    /// intersecting chunks.
    ///
    /// # Examples
    ///```
    /// use std::iter::FromIterator;
    /// use self::immutable_chunkmap::map::Map;
    ///
    /// let m0 = Map::from_iter((0..100000).map(|k| (k, 1)));
    /// let m1 = Map::from_iter((50..30000).map(|k| (k, 1)));
    /// let m2 = m0.intersect(&m1, |_k, v0, v1| Some(v0 + v1));
    ///
    /// for i in 0..100000 {
    ///     if i >= 30000 || i < 50 {
    ///         assert!(m2.get(&i).is_none());
    ///     } else {
    ///         assert!(*m2.get(&i).unwrap() == 2);
    ///     }
    /// }
    /// ```
    pub fn intersect<F>(&self, other: &Map<K, V>, mut f: F) -> Self
    where
        F: FnMut(&K, &V, &V) -> Option<V>,
    {
        Map(Tree::intersect(&self.0, &other.0, &mut f))
    }

    /// Produce a map containing the second map subtracted from the
    /// first. The function F is called for each intersecting element,
    /// and ultimately decides whether it appears in the result, for
    /// example, to compute a classical set diff, the function should
    /// always return None.
    ///
    /// # Examples
    ///```
    /// use std::iter::FromIterator;
    /// use self::immutable_chunkmap::map::Map;
    ///
    /// let m0 = Map::from_iter((0..10000).map(|k| (k, 1)));
    /// let m1 = Map::from_iter((50..3000).map(|k| (k, 1)));
    /// let m2 = m0.diff(&m1, |_k, _v0, _v1| None);
    ///
    /// m2.invariant();
    /// dbg!(m2.len());
    /// assert!(m2.len() == 10000 - 2950);
    /// for i in 0..10000 {
    ///     if i >= 3000 || i < 50 {
    ///         assert!(*m2.get(&i).unwrap() == 1);
    ///     } else {
    ///         assert!(m2.get(&i).is_none());
    ///     }
    /// }
    /// ```
    pub fn diff<F>(&self, other: &Map<K, V>, mut f: F) -> Self
    where F: FnMut(&K, &V, &V) -> Option<V>, K: Debug, V: Debug
    {
        Map(Tree::diff(&self.0, &other.0, &mut f))
    }

    /// lookup the mapping for k. If it doesn't exist return
    /// None. Runs in log(N) time and constant space. where N
    /// is the size of the map.
    pub fn get<'a, Q: ?Sized + Ord>(&'a self, k: &Q) -> Option<&'a V>
    where
        K: Borrow<Q>,
    {
        self.0.get(k)
    }

    /// lookup the mapping for k. Return the key. If it doesn't exist
    /// return None. Runs in log(N) time and constant space. where N
    /// is the size of the map.
    pub fn get_key<'a, Q: ?Sized + Ord>(&'a self, k: &Q) -> Option<&'a K>
    where
        K: Borrow<Q>,
    {
        self.0.get_key(k)
    }

    /// lookup the mapping for k. Return both the key and the
    /// value. If it doesn't exist return None. Runs in log(N) time
    /// and constant space. where N is the size of the map.
    pub fn get_full<'a, Q: ?Sized + Ord>(&'a self, k: &Q) -> Option<(&'a K, &'a V)>
    where
        K: Borrow<Q>,
    {
        self.0.get_full(k)
    }

    /// return a new map with the mapping under k removed. If
    /// the binding existed in the old map return it. Runs in
    /// log(N) time and log(N) space, where N is the size of
    /// the map.
    pub fn remove<Q: Sized + Ord>(&self, k: &Q) -> (Self, Option<V>)
    where
        K: Borrow<Q>,
    {
        let (t, prev) = self.0.remove(k);
        (Map(t), prev)
    }

    /// get the number of elements in the map O(1) time and space
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// return an iterator over the subset of elements in the
    /// map that are within the specified range.
    ///
    /// The returned iterator runs in O(log(N) + M) time, and
    /// constant space. N is the number of elements in the
    /// tree, and M is the number of elements you examine.
    ///
    /// if lbound >= ubound the returned iterator will be empty
    pub fn range<'a, Q>(&'a self, lbound: Bound<Q>, ubound: Bound<Q>) -> Iter<'a, Q, K, V>
    where
        Q: Ord,
        K: Borrow<Q>,
    {
        self.0.range(lbound, ubound)
    }
}

impl<K, V> Map<K, V>
where
    K: Ord + Clone + Debug,
    V: Clone + Debug,
{
    #[allow(dead_code)]
    pub fn invariant(&self) -> () {
        self.0.invariant()
    }
}