1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
use crate::math::MintVec4;

/// Wraps u32 that represents a packed RGBA color. Mostly used by types in the
/// low level custom drawing API, such as [`DrawListMut`](crate::DrawListMut).
///
/// The bits of a color are in "`0xAABBGGRR`" format (e.g. RGBA as little endian
/// bytes). For clarity: we don't support an equivalent to the
/// `IMGUI_USE_BGRA_PACKED_COLOR` define.
///
/// This used to be named `ImColor`, but was renamed to avoid confusion with
/// the type with that name in the C++ API (which uses 32 bits per channel).
///
/// While it doesn't provide methods to access the fields, they can be accessed
/// via the `Deref`/`DerefMut` impls it provides targeting
/// [`imgui::color::ImColor32Fields`](crate::color::ImColor32Fields), which has
/// no other meaningful uses.
///
/// # Example
/// ```
/// let mut c = imgui::ImColor32::from_rgba(0x80, 0xc0, 0x40, 0xff);
/// assert_eq!(c.to_bits(), 0xff_40_c0_80); // Note: 0xAA_BB_GG_RR
/// // Field access
/// assert_eq!(c.r, 0x80);
/// assert_eq!(c.g, 0xc0);
/// assert_eq!(c.b, 0x40);
/// assert_eq!(c.a, 0xff);
/// c.b = 0xbb;
/// assert_eq!(c.to_bits(), 0xff_bb_c0_80);
/// ```
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(transparent)]
pub struct ImColor32(u32); // TBH maybe the wrapped field should be `pub`.

impl ImColor32 {
    /// Convenience constant for solid black.
    pub const BLACK: Self = Self(0xff_00_00_00);

    /// Convenience constant for solid white.
    pub const WHITE: Self = Self(0xff_ff_ff_ff);

    /// Convenience constant for full transparency.
    pub const TRANSPARENT: Self = Self(0);

    /// Construct a color from 4 single-byte `u8` channel values, which should
    /// be between 0 and 255.
    #[inline]
    pub const fn from_rgba(r: u8, g: u8, b: u8, a: u8) -> Self {
        Self(
            ((a as u32) << Self::A_SHIFT)
                | ((r as u32) << Self::R_SHIFT)
                | ((g as u32) << Self::G_SHIFT)
                | ((b as u32) << Self::B_SHIFT),
        )
    }

    /// Construct a fully opaque color from 3 single-byte `u8` channel values.
    /// Same as [`Self::from_rgba`] with a == 255
    #[inline]
    pub const fn from_rgb(r: u8, g: u8, b: u8) -> Self {
        Self::from_rgba(r, g, b, 0xff)
    }

    /// Construct a fully opaque color from 4 `f32` channel values in the range
    /// `0.0 ..= 1.0` (values outside this range are clamped to it, with NaN
    /// mapped to 0.0).
    ///
    /// Note: No alpha premultiplication is done, so your input should be have
    /// premultiplied alpha if needed.
    #[inline]
    // not const fn because no float math in const eval yet 😩
    pub fn from_rgba_f32s(r: f32, g: f32, b: f32, a: f32) -> Self {
        Self::from_rgba(
            f32_to_u8_sat(r),
            f32_to_u8_sat(g),
            f32_to_u8_sat(b),
            f32_to_u8_sat(a),
        )
    }

    /// Return the channels as an array of f32 in `[r, g, b, a]` order.
    #[inline]
    pub fn to_rgba_f32s(self) -> [f32; 4] {
        let &ImColor32Fields { r, g, b, a } = &*self;
        [
            u8_to_f32_sat(r),
            u8_to_f32_sat(g),
            u8_to_f32_sat(b),
            u8_to_f32_sat(a),
        ]
    }

    /// Return the channels as an array of u8 in `[r, g, b, a]` order.
    #[inline]
    pub fn to_rgba(self) -> [u8; 4] {
        let &ImColor32Fields { r, g, b, a } = &*self;
        [r, g, b, a]
    }

    /// Equivalent to [`Self::from_rgba_f32s`], but with an alpha of 1.0 (e.g.
    /// opaque).
    #[inline]
    pub fn from_rgb_f32s(r: f32, g: f32, b: f32) -> Self {
        Self::from_rgba(f32_to_u8_sat(r), f32_to_u8_sat(g), f32_to_u8_sat(b), 0xff)
    }

    /// Construct a color from the `u32` that makes up the bits in `0xAABBGGRR`
    /// format.
    ///
    /// Specifically, this takes the RGBA values as a little-endian u32 with 8
    /// bits per channel.
    ///
    /// Note that [`ImColor32::from_rgba`] may be a bit easier to use.
    #[inline]
    pub const fn from_bits(u: u32) -> Self {
        Self(u)
    }

    /// Return the bits of the color as a u32. These are in "`0xAABBGGRR`" format, that
    /// is, little-endian RGBA with 8 bits per channel.
    #[inline]
    pub const fn to_bits(self) -> u32 {
        self.0
    }

    // These are public in C++ ImGui, should they be public here?
    /// The number of bits to shift the byte of the red channel. Always 0.
    const R_SHIFT: u32 = 0;
    /// The number of bits to shift the byte of the green channel. Always 8.
    const G_SHIFT: u32 = 8;
    /// The number of bits to shift the byte of the blue channel. Always 16.
    const B_SHIFT: u32 = 16;
    /// The number of bits to shift the byte of the alpha channel. Always 24.
    const A_SHIFT: u32 = 24;
}

impl Default for ImColor32 {
    #[inline]
    fn default() -> Self {
        Self::TRANSPARENT
    }
}

impl std::fmt::Debug for ImColor32 {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ImColor32")
            .field("r", &self.r)
            .field("g", &self.g)
            .field("b", &self.b)
            .field("a", &self.a)
            .finish()
    }
}

/// A struct that exists to allow field access to [`ImColor32`]. It essentially
/// exists to be a `Deref`/`DerefMut` target and provide field access.
///
/// Note that while this is repr(C), be aware that on big-endian machines
/// (`cfg(target_endian = "big")`) the order of the fields is reversed, as this
/// is a view into a packed u32.
///
/// Generally should not be used, except as the target of the `Deref` impl of
/// [`ImColor32`].
#[derive(Copy, Clone, Debug)]
#[repr(C, align(4))]
// Should this be #[non_exhaustive] to discourage direct use?
#[rustfmt::skip]
#[allow(missing_docs)]
pub struct ImColor32Fields {
    #[cfg(target_endian = "little")] pub r: u8,
    #[cfg(target_endian = "little")] pub g: u8,
    #[cfg(target_endian = "little")] pub b: u8,
    #[cfg(target_endian = "little")] pub a: u8,
    // TODO(someday): i guess we should have BE tests, but for now I verified
    // this locally.
    #[cfg(target_endian = "big")] pub a: u8,
    #[cfg(target_endian = "big")] pub b: u8,
    #[cfg(target_endian = "big")] pub g: u8,
    #[cfg(target_endian = "big")] pub r: u8,
}

// We assume that big and little are the only endiannesses, and that exactly one
// is set. That is, PDP endian is not in use, and the we aren't using a
// completely broken custom target json or something.
#[cfg(any(
    all(target_endian = "little", target_endian = "big"),
    all(not(target_endian = "little"), not(target_endian = "big")),
))]
compile_error!("`cfg(target_endian = \"little\")` must be `cfg(not(target_endian = \"big\")`");

// static assert sizes match
const _: [(); core::mem::size_of::<ImColor32>()] = [(); core::mem::size_of::<ImColor32Fields>()];
const _: [(); core::mem::align_of::<ImColor32>()] = [(); core::mem::align_of::<ImColor32Fields>()];

impl core::ops::Deref for ImColor32 {
    type Target = ImColor32Fields;
    #[inline]
    fn deref(&self) -> &ImColor32Fields {
        // Safety: we statically assert the size and align match, and neither
        // type has any special invariants.
        unsafe { &*(self as *const Self as *const ImColor32Fields) }
    }
}
impl core::ops::DerefMut for ImColor32 {
    #[inline]
    fn deref_mut(&mut self) -> &mut ImColor32Fields {
        // Safety: we statically assert the size and align match, and neither
        // type has any special invariants.
        unsafe { &mut *(self as *mut Self as *mut ImColor32Fields) }
    }
}

impl From<ImColor32> for u32 {
    #[inline]
    fn from(color: ImColor32) -> Self {
        color.0
    }
}

impl From<u32> for ImColor32 {
    #[inline]
    fn from(color: u32) -> Self {
        ImColor32(color)
    }
}

impl From<MintVec4> for ImColor32 {
    fn from(v: MintVec4) -> Self {
        Self::from_rgba_f32s(v.x, v.y, v.z, v.w)
    }
}

impl From<[f32; 4]> for ImColor32 {
    #[inline]
    fn from(v: [f32; 4]) -> Self {
        Self::from_rgba_f32s(v[0], v[1], v[2], v[3])
    }
}

impl From<(f32, f32, f32, f32)> for ImColor32 {
    #[inline]
    fn from(v: (f32, f32, f32, f32)) -> Self {
        Self::from_rgba_f32s(v.0, v.1, v.2, v.3)
    }
}

impl From<[f32; 3]> for ImColor32 {
    #[inline]
    fn from(v: [f32; 3]) -> Self {
        Self::from_rgb_f32s(v[0], v[1], v[2])
    }
}

impl From<(f32, f32, f32)> for ImColor32 {
    fn from(v: (f32, f32, f32)) -> Self {
        Self::from_rgb_f32s(v.0, v.1, v.2)
    }
}

impl From<ImColor32> for [f32; 4] {
    #[inline]
    fn from(v: ImColor32) -> Self {
        v.to_rgba_f32s()
    }
}
impl From<ImColor32> for (f32, f32, f32, f32) {
    #[inline]
    fn from(color: ImColor32) -> Self {
        let [r, g, b, a]: [f32; 4] = color.into();
        (r, g, b, a)
    }
}

// These utilities might be worth making `pub` as free functions in
// `crate::color` so user code can ensure their numeric handling is
// consistent...

/// Clamp `v` to between 0.0 and 1.0, always returning a value between those.
///
/// Never returns NaN, or -0.0 — instead returns +0.0 for these (We differ from
/// C++ Dear ImGUI here which probably is just ignoring values like these).
#[inline]
pub(crate) fn saturate(v: f32) -> f32 {
    // Note: written strangely so that special values (NaN/-0.0) are handled
    // automatically with no extra checks.
    if v > 0.0 {
        if v <= 1.0 {
            v
        } else {
            1.0
        }
    } else {
        0.0
    }
}

/// Quantize a value in `0.0..=1.0` to `0..=u8::MAX`. Input outside 0.0..=1.0 is
/// clamped. Uses a bias of 0.5, because we assume centered quantization is used
/// (and because C++ imgui does it too). See:
/// - https://github.com/ocornut/imgui/blob/e28b51786eae60f32c18214658c15952639085a2/imgui_internal.h#L218
/// - https://cbloomrants.blogspot.com/2020/09/topics-in-quantization-for-games.html
///   (see `quantize_centered`)
#[inline]
pub(crate) fn f32_to_u8_sat(f: f32) -> u8 {
    let f = saturate(f) * 255.0 + 0.5;
    // Safety: `saturate`'s result is between 0.0 and 1.0 (never NaN even for
    // NaN input), and so for all inputs, `saturate(f) * 255.0 + 0.5` is inside
    // `0.5 ..= 255.5`.
    //
    // This is verified for all f32 in `test_f32_to_u8_sat_exhaustive`.
    //
    // Also note that LLVM doesn't bother trying to figure this out so the
    // unchecked does actually help. (That said, this likely doesn't matter
    // for imgui-rs, but I had this code in another project and it felt
    // silly to needlessly pessimize it).
    unsafe { f.to_int_unchecked() }
}

/// Opposite of `f32_to_u8_sat`. Since we assume centered quantization, this is
/// equivalent to dividing by 255 (or, multiplying by 1.0/255.0)
#[inline]
pub(crate) fn u8_to_f32_sat(u: u8) -> f32 {
    (u as f32) * (1.0 / 255.0)
}

#[test]
fn check_sat() {
    assert_eq!(saturate(1.0), 1.0);
    assert_eq!(saturate(0.5), 0.5);
    assert_eq!(saturate(0.0), 0.0);
    assert_eq!(saturate(-1.0), 0.0);
    // next float from 1.0
    assert_eq!(saturate(1.0 + f32::EPSILON), 1.0);
    // prev float from 0.0 (Well, from -0.0)
    assert_eq!(saturate(-f32::MIN_POSITIVE), 0.0);
    // some NaNs.
    assert_eq!(saturate(f32::NAN), 0.0);
    assert_eq!(saturate(-f32::NAN), 0.0);
    // neg zero comes through as +0
    assert_eq!(saturate(-0.0).to_bits(), 0.0f32.to_bits());
}

// Check that the unsafe in `f32_to_u8_sat` is fine for all f32 (and that the
// comments I wrote about `saturate` are actually true). This is way too slow in
// debug mode, but finishes in ~15s on my machine for release (just this test).
// This is tested in CI, but will only run if invoked manually with something
// like: `cargo test -p imgui --release -- --ignored`.
#[test]
#[ignore]
fn test_f32_to_u8_sat_exhaustive() {
    for f in (0..=u32::MAX).map(f32::from_bits) {
        let v = saturate(f);
        assert!(
            (0.0..=1.0).contains(&v) && (v.to_bits() != (-0.0f32).to_bits()),
            "sat({} [e.g. {:#x}]) => {} [e.g {:#x}]",
            f,
            f.to_bits(),
            v,
            v.to_bits(),
        );
        let sat = v * 255.0 + 0.5;
        // Note: This checks what's required by is the safety predicate for
        // `f32::to_int_unchecked`:
        // https://doc.rust-lang.org/std/primitive.f32.html#method.to_int_unchecked
        assert!(
            sat.trunc() >= 0.0 && sat.trunc() <= (u8::MAX as f32) && sat.is_finite(),
            "f32_to_u8_sat({} [e.g. {:#x}]) would be UB!",
            f,
            f.to_bits(),
        );
    }
}

#[test]
fn test_saturate_all_u8s() {
    for u in 0..=u8::MAX {
        let v = f32_to_u8_sat(u8_to_f32_sat(u));
        assert_eq!(u, v);
    }
}