1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
use crate::ops::*;
use crate::opbasics::*;

extern crate rawloader;
extern crate multicache;
use self::multicache::MultiCache;
extern crate serde;
extern crate serde_yaml;
use self::serde::{Serialize,Deserialize};

use std::fmt::Debug;
use std::sync::Arc;
use std::io::Write;
use std::path::Path;
use std::hash::{Hash, Hasher};
use std::time::Instant;

/// A RawImage processed into a full 8bit sRGB image with levels and gamma
///
/// The data is a Vec<u8> width width*height*3 elements, where each element is a value
/// between 0 and 255 with the intensity of the color channel with gamma applied
#[derive(Debug, Clone)]
pub struct SRGBImage {
  pub width: usize,
  pub height: usize,
  pub data: Vec<u8>,
}

pub type PipelineCache = MultiCache<BufHash, OpBuffer>;

fn do_timing<O, F: FnMut() -> O>(name: &str, mut closure: F) -> O {
  let from_time = Instant::now();
  let ret = closure();
  let duration = from_time.elapsed();
  debug!("{} ms for '{}'", duration.as_millis(), name);

  ret
}

pub trait ImageOp<'a>: Debug+Serialize+Deserialize<'a> {
  fn name(&self) -> &str;
  fn run(&self, pipeline: &PipelineGlobals, buf: Arc<OpBuffer>) -> Arc<OpBuffer>;
  fn to_settings(&self) -> String {
    serde_yaml::to_string(self).unwrap()
  }
  fn hash(&self, hasher: &mut BufHasher) {
    // Hash the name first as a zero sized struct doesn't actually do any hashing
    hasher.write(self.name().as_bytes()).unwrap();
    hasher.from_serialize(self);
  }
}

#[derive(Debug, Copy, Clone, Serialize)]
pub struct PipelineSettings {
  pub maxwidth: usize,
  pub maxheight: usize,
  pub linear: bool,
}

impl PipelineSettings{
  fn hash(&self, hasher: &mut BufHasher) {
    hasher.from_serialize(self);
  }
}

#[derive(Debug)]
pub struct PipelineGlobals {
  pub image: RawImage,
  pub settings: PipelineSettings,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct PipelineOps {
  pub gofloat: gofloat::OpGoFloat,
  pub demosaic: demosaic::OpDemosaic,
  pub tolab: colorspaces::OpToLab,
  pub basecurve: curves::OpBaseCurve,
  pub fromlab: colorspaces::OpFromLab,
  pub gamma: gamma::OpGamma,
  pub transform: transform::OpTransform,
}

impl PartialEq for PipelineOps {
  fn eq(&self, other: &Self) -> bool {
    let mut selfhasher = BufHasher::new();
    selfhasher.from_serialize(self);
    let mut otherhasher = BufHasher::new();
    otherhasher.from_serialize(other);
    selfhasher.result() == otherhasher.result()
  }
}
impl Eq for PipelineOps {}
impl Hash for PipelineOps {
  fn hash<H: Hasher>(&self, state: &mut H) {
    let mut selfhasher = BufHasher::new();
    selfhasher.from_serialize(self);
    selfhasher.result().hash(state);
  }
}

macro_rules! for_vals {
  ([$($val:expr),*] |$x:pat, $i:ident| $body:expr) => {
    let mut pos = 0;
    $({
      let $x = $val;
      pos += 1;
      let $i = pos-1;
      $body
    })*
  }
}

macro_rules! all_ops {
  ($ops:expr, |$x:pat, $i:ident| $body:expr) => {
    for_vals!([
      $ops.gofloat,
      $ops.demosaic,
      $ops.tolab,
      $ops.basecurve,
      $ops.fromlab,
      $ops.gamma,
      $ops.transform
    ] |$x, $i| {
      $body
    });
  }
}

#[derive(Debug)]
pub struct Pipeline {
  pub globals: PipelineGlobals,
  pub ops: PipelineOps,
}

#[derive(Debug, Serialize, Deserialize)]
pub struct PipelineSerialization {
  pub version: u32,
  pub filehash: String,
}

impl Pipeline {
  pub fn new_cache(size: usize) -> PipelineCache {
    MultiCache::new(size)
  }

  pub fn new_from_file<P: AsRef<Path>>(path: P, maxwidth: usize, maxheight: usize, linear: bool) -> Result<Pipeline, String> {
    let img = rawloader::decode_file(path).map_err(|err| err.to_string())?;
    Self::new_from_rawimage(img, maxwidth, maxheight, linear)
  }

  pub fn new_from_rawimage(img: RawImage, maxwidth: usize, maxheight: usize, linear: bool) -> Result<Pipeline, String> {
    // Check if the image's orientation results in a rotation that
    // swaps the maximum width with the maximum height
    let (transpose, ..) = img.orientation.to_flips();
    let (maxwidth, maxheight) = if transpose {
      (maxheight, maxwidth)
    } else {
      (maxwidth, maxheight)
    };

    let ops = PipelineOps {
      gofloat: gofloat::OpGoFloat::new(&img),
      demosaic: demosaic::OpDemosaic::new(&img),
      tolab: colorspaces::OpToLab::new(&img),
      basecurve: curves::OpBaseCurve::new(&img),
      fromlab: colorspaces::OpFromLab::new(&img),
      gamma: gamma::OpGamma::new(&img),
      transform: transform::OpTransform::new(&img),
    };

    Ok(Pipeline {
      globals: PipelineGlobals {
        image: img,
        settings: PipelineSettings {maxwidth, maxheight, linear},
      },
      ops,
    })
  }

  pub fn to_serial(&self) -> String {
    let serial = (PipelineSerialization {
      version: 0,
      filehash: "0".to_string(),
    }, &self.ops);

    serde_yaml::to_string(&serial).unwrap()
  }

  pub fn new_from_serial(img: RawImage, maxwidth: usize, maxheight: usize, linear: bool, serial: String) -> Pipeline {
    let serial: (PipelineSerialization, PipelineOps) = serde_yaml::from_str(&serial).unwrap();

    Pipeline {
      globals: PipelineGlobals {
        image: img,
        settings: PipelineSettings {maxwidth, maxheight, linear},
      },
      ops: serial.1,
    }
  }

  pub fn run(&mut self, cache: Option<&PipelineCache>) -> Arc<OpBuffer> {
    // Generate all the hashes for the operations
    let mut hasher = BufHasher::new();
    let mut ophashes = Vec::new();
    let mut startpos = 0;
    // Hash the base settings that are potentially used by all operations
    self.globals.settings.hash(&mut hasher);
    // Start with a dummy buffer as gofloat doesn't use it
    let mut bufin = Arc::new(OpBuffer::default());
    // Find the hashes of all ops
    all_ops!(self.ops, |ref op, i| {
      op.hash(&mut hasher);
      let result = hasher.result();
      ophashes.push(result);

      // Set the latest op for which we already have the calculated buffer
      if let Some(cache) = cache {
        if let Some(buffer) = cache.get(&result) {
          bufin = buffer;
          startpos = i+1;
        }
      }
    });

    // Do the operations, starting for the last we have a cached buffer for
    all_ops!(self.ops, |ref op, i| {
      if i >= startpos {
        bufin = do_timing(op.name(), ||op.run(&self.globals, bufin.clone()));
        if let Some(cache) = cache {
          cache.put_arc(ophashes[i], bufin.clone(), bufin.width*bufin.height*bufin.colors*4);
        }
      }
    });
    bufin
  }

  pub fn output_8bit(&mut self, cache: Option<&PipelineCache>) -> Result<SRGBImage, String> {
    let buffer = self.run(cache);
    let mut image = vec![0 as u8; buffer.width*buffer.height*3];
    for (o, i) in image.chunks_exact_mut(1).zip(buffer.data.iter()) {
      o[0] = (i*255.0).max(0.0).min(255.0) as u8;
    }

    Ok(SRGBImage{
      width: buffer.width,
      height: buffer.height,
      data: image,
    })
  }
}