1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
//! Image Processing Functions
use std::cmp;

use crate::image::{GenericImage, GenericImageView, SubImage};
use crate::traits::Pixel;

pub use self::sample::FilterType;

pub use self::sample::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle};

/// Affine transformations
pub use self::affine::{
    flip_horizontal, flip_horizontal_in_place, flip_vertical, flip_vertical_in_place, rotate180,
    rotate180_in_place, rotate270, rotate90, rotate180_in, rotate90_in, rotate270_in, flip_horizontal_in, flip_vertical_in
};

/// Image sampling
pub use self::sample::{blur, filter3x3, resize, thumbnail, unsharpen};

/// Color operations
pub use self::colorops::{brighten, contrast, dither, grayscale, huerotate, index_colors, invert,
                         BiLevel, ColorMap};

mod affine;
// Public only because of Rust bug:
// https://github.com/rust-lang/rust/issues/18241
pub mod colorops;
mod sample;

/// Return a mutable view into an image
pub fn crop<I: GenericImageView>(
    image: &mut I,
    x: u32,
    y: u32,
    width: u32,
    height: u32,
) -> SubImage<&mut I> {
    let (x, y, width, height) = crop_dimms(image, x, y, width, height);
    SubImage::new(image, x, y, width, height)
}

/// Return an immutable view into an image
pub fn crop_imm<I: GenericImageView>(
    image: &I,
    x: u32,
    y: u32,
    width: u32,
    height: u32,
) -> SubImage<&I> {
    let (x, y, width, height) = crop_dimms(image, x, y, width, height);
    SubImage::new(image, x, y, width, height)
}

fn crop_dimms<I: GenericImageView>(
    image: &I,
    x: u32,
    y: u32,
    width: u32,
    height: u32,
) -> (u32, u32, u32, u32) {
    let (iwidth, iheight) = image.dimensions();

    let x = cmp::min(x, iwidth);
    let y = cmp::min(y, iheight);

    let height = cmp::min(height, iheight - y);
    let width = cmp::min(width, iwidth - x);

    (x, y, width, height)
}

/// Calculate the region that can be copied from top to bottom.
///
/// Given image size of bottom and top image, and a point at which we want to place the top image
/// onto the bottom image, how large can we be? Have to wary of the following issues:
/// * Top might be larger than bottom
/// * Overflows in the computation
/// * Coordinates could be completely out of bounds
///
/// The main idea is to make use of inequalities provided by the nature of `saturing_add` and
/// `saturating_sub`. These intrinsically validate that all resulting coordinates will be in bounds
/// for both images.
///
/// We want that all these coordinate accesses are safe:
/// 1. `bottom.get_pixel(x + [0..x_range), y + [0..y_range))`
/// 2. `top.get_pixel([0..x_range), [0..y_range))`
///
/// Proof that the function provides the necessary bounds for width. Note that all unaugmented math
/// operations are to be read in standard arithmetic, not integer arithmetic. Since no direct
/// integer arithmetic occurs in the implementation, this is unambiguous.
///
/// ```text
/// Three short notes/lemmata:
/// - Iff `(a - b) <= 0` then `a.saturating_sub(b) = 0`
/// - Iff `(a - b) >= 0` then `a.saturating_sub(b) = a - b`
/// - If  `a <= c` then `a.saturating_sub(b) <= c.saturating_sub(b)`
///
/// 1.1 We show that if `bottom_width <= x`, then `x_range = 0` therefore `x + [0..x_range)` is empty.
///
/// x_range
///  = (top_width.saturating_add(x).min(bottom_width)).saturating_sub(x)
/// <= bottom_width.saturating_sub(x)
///
/// bottom_width <= x
/// <==> bottom_width - x <= 0
/// <==> bottom_width.saturating_sub(x) = 0
///  ==> x_range <= 0
///  ==> x_range  = 0
///
/// 1.2 If `x < bottom_width` then `x + x_range < bottom_width`
///
/// x + x_range
/// <= x + bottom_width.saturating_sub(x)
///  = x + (bottom_width - x)
///  = bottom_width
///
/// 2. We show that `x_range <= top_width`
///
/// x_range
///  = (top_width.saturating_add(x).min(bottom_width)).saturating_sub(x)
/// <= top_width.saturating_add(x).saturating_sub(x)
/// <= (top_wdith + x).saturating_sub(x)
///  = top_width (due to `top_width >= 0` and `x >= 0`)
/// ```
///
/// Proof is the same for height.
pub fn overlay_bounds(
    (bottom_width, bottom_height): (u32, u32),
    (top_width, top_height): (u32, u32),
    x: u32,
    y: u32
)
    -> (u32, u32)
{
    let x_range = top_width.saturating_add(x) // Calculate max coordinate
        .min(bottom_width) // Restrict to lower width
        .saturating_sub(x); // Determinate length from start `x`
    let y_range = top_height.saturating_add(y)
        .min(bottom_height)
        .saturating_sub(y);
    (x_range, y_range)
}

/// Overlay an image at a given coordinate (x, y)
pub fn overlay<I, J>(bottom: &mut I, top: &J, x: u32, y: u32)
where
    I: GenericImage,
    J: GenericImageView<Pixel = I::Pixel>,
{
    let bottom_dims = bottom.dimensions();
    let top_dims = top.dimensions();

    // Crop our top image if we're going out of bounds
    let (range_width, range_height) = overlay_bounds(bottom_dims, top_dims, x, y);

    for top_y in 0..range_height {
        for top_x in 0..range_width {
            let p = top.get_pixel(top_x, top_y);
            let mut bottom_pixel = bottom.get_pixel(x + top_x, y + top_y);
            bottom_pixel.blend(&p);

            bottom.put_pixel(x + top_x, y + top_y, bottom_pixel);
        }
    }
}

/// Replace the contents of an image at a given coordinate (x, y)
pub fn replace<I, J>(bottom: &mut I, top: &J, x: u32, y: u32)
where
    I: GenericImage,
    J: GenericImageView<Pixel = I::Pixel>,
{
    let bottom_dims = bottom.dimensions();
    let top_dims = top.dimensions();

    // Crop our top image if we're going out of bounds
    let (range_width, range_height) = overlay_bounds(bottom_dims, top_dims, x, y);

    for top_y in 0..range_height {
        for top_x in 0..range_width {
            let p = top.get_pixel(top_x, top_y);
            bottom.put_pixel(x + top_x, y + top_y, p);
        }
    }
}

#[cfg(test)]
mod tests {

    use super::overlay;
    use crate::ImageBuffer;
    use crate::color::Rgb;

    #[test]
    /// Test that images written into other images works
    fn test_image_in_image() {
        let mut target = ImageBuffer::new(32, 32);
        let source = ImageBuffer::from_pixel(16, 16, Rgb([255u8, 0, 0]));
        overlay(&mut target, &source, 0, 0);
        assert!(*target.get_pixel(0, 0) == Rgb([255u8, 0, 0]));
        assert!(*target.get_pixel(15, 0) == Rgb([255u8, 0, 0]));
        assert!(*target.get_pixel(16, 0) == Rgb([0u8, 0, 0]));
        assert!(*target.get_pixel(0, 15) == Rgb([255u8, 0, 0]));
        assert!(*target.get_pixel(0, 16) == Rgb([0u8, 0, 0]));
    }

    #[test]
    /// Test that images written outside of a frame doesn't blow up
    fn test_image_in_image_outside_of_bounds() {
        let mut target = ImageBuffer::new(32, 32);
        let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
        overlay(&mut target, &source, 1, 1);
        assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
        assert!(*target.get_pixel(1, 1) == Rgb([255u8, 0, 0]));
        assert!(*target.get_pixel(31, 31) == Rgb([255u8, 0, 0]));
    }

    #[test]
    /// Test that images written to coordinates out of the frame doesn't blow up
    /// (issue came up in #848)
    fn test_image_outside_image_no_wrap_around() {
        let mut target = ImageBuffer::new(32, 32);
        let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
        overlay(&mut target, &source, 33, 33);
        assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
        assert!(*target.get_pixel(1, 1) == Rgb([0, 0, 0]));
        assert!(*target.get_pixel(31, 31) == Rgb([0, 0, 0]));
    }

    #[test]
    /// Test that images written to coordinates with overflow works
    fn test_image_coordinate_overflow() {
        let mut target = ImageBuffer::new(16, 16);
        let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
        // Overflows to 'sane' coordinates but top is larger than bot.
        overlay(&mut target, &source, u32::max_value() - 31, u32::max_value() - 31);
        assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
        assert!(*target.get_pixel(1, 1) == Rgb([0, 0, 0]));
        assert!(*target.get_pixel(15, 15) == Rgb([0, 0, 0]));
    }
}