1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
// Distributed under The MIT License (MIT)
//
// Copyright (c) 2019 The `image-rs` developers
use core::cmp;
use core::fmt;
use core::ops::{Deref, DerefMut};

use crate::buf::{buf, Buffer};
use crate::{AsPixel, Pixel};
use zerocopy::{AsBytes, FromBytes};

/// A **r**einterpretable v**ec**tor for an array of pixels.
///
/// It allows efficient conversion to other pixel representations, that is effective
/// reinterpretation casts.
pub struct Rec<P: AsBytes + FromBytes> {
    inner: Buffer,
    length: usize,
    pixel: Pixel<P>,
}

/// Error representation for a failed buffer reuse.
///
/// Indicates that the capacity of the underlying buffer is not large enough to perform the
/// operation without a reallocation. This may be either since the allocation is simply not large
/// enough or due to the requested length not having any representation in memory for the chosen
/// pixel type.
///
/// ```
/// # use canvas::Rec;
/// let mut rec = Rec::<u16>::new(16);
///
/// let err = match rec.reuse(rec.capacity() + 1) {
///     Ok(_) => unreachable!("Increasing capacity would require reallocation"),
///     Err(err) => err,
/// };
///
/// let err = match rec.reuse(usize::max_value()) {
///     Ok(_) => unreachable!("A slice of u16 can never have usize::MAX elements"),
///     Err(err) => err,
/// };
/// ```
pub struct ReuseError {
    requested: Option<usize>,
    capacity: usize,
}

impl<P: AsBytes + FromBytes> Rec<P> {
    /// Allocate a pixel buffer by the pixel count.
    ///
    /// # Panics
    ///
    /// This function will panic when the byte-length of the slice with the provided count would
    /// exceed the possible `usize` values. To avoid this, use `bytes_for_pixel` with manual
    /// calculation of the byte length instead.
    ///
    /// This function will also panic if the allocation fails.
    pub fn new(count: usize) -> Self
    where
        P: AsPixel,
    {
        Self::new_for_pixel(P::pixel(), count)
    }

    /// Allocate a pixel buffer by the pixel count.
    ///
    /// Provides the opportunity to construct the pixel argument via other means than the trait,
    /// for example a dynamically checked expression.
    ///
    /// # Panics
    ///
    /// This function will panic when the byte-length of the slice with the provided count would
    /// exceed the possible `usize` values. To avoid this, use `bytes_for_pixel` with manual
    /// calculation of the byte length instead.
    ///
    /// This function will also panic if the allocation fails.
    pub fn new_for_pixel(pixel: Pixel<P>, count: usize) -> Self {
        Self::bytes_for_pixel(pixel, mem_size(pixel, count))
    }

    /// Allocate a pixel buffer by providing the byte count you wish to allocate.
    ///
    /// # Panics
    ///
    /// This function will panic if the allocation fails.
    pub fn bytes_for_pixel(pixel: Pixel<P>, mem_size: usize) -> Self {
        Rec {
            inner: Buffer::new(mem_size),
            length: mem_size,
            pixel,
        }
    }

    /// Change the number of pixels.
    ///
    /// This will always reallocate the buffer if the size exceeds the current capacity.
    ///
    /// # Panics
    ///
    /// This function will panic when the byte-length of the slice with the provided count would
    /// exceed the possible `usize` values. To avoid this, use `resize_bytes` with manual
    /// calculation of the byte length instead.
    ///
    /// This function will also panic if an allocation is necessary but fails.
    pub fn resize(&mut self, count: usize) {
        self.resize_bytes(mem_size(self.pixel, count))
    }

    /// Change the size in bytes.
    ///
    /// The length is afterwards equal to `bytes / mem::size_of::<P>()`, i.e. the quotient rounded
    /// down.
    ///
    /// This will always reallocate the buffer if the size exceeds the current capacity.
    ///
    /// # Panics
    ///
    /// This function will panic if an allocation is necessary but fails.
    pub fn resize_bytes(&mut self, bytes: usize) {
        self.inner.grow_to(bytes);
        self.length = bytes;
    }

    /// Change the number of pixels without reallocation.
    ///
    /// Returns `Ok` when the resizing was successfully completed to the requested size and returns
    /// `Err` if this could not have been performed without a reallocation. This function will also
    /// never deallocate memory.
    ///
    /// ```
    /// # use canvas::Rec;
    /// // Initial allocation may panic due to allocation error for now.
    /// let mut buffer: Rec<u16> = Rec::new(100);
    /// buffer.reuse(0)
    ///     .expect("Requested size smaller than allocation");
    /// buffer.reuse(100)
    ///     .expect("The buffer didn't shrink from previous reuse");
    ///
    /// // Capacity may be larger than requested size at initialization.
    /// let capacity = buffer.capacity();
    /// buffer.reuse(capacity)
    ///     .expect("Set to full underlying allocation size.");
    /// ```
    pub fn reuse(&mut self, count: usize) -> Result<(), ReuseError> {
        let bytes = count
            .checked_mul(self.pixel.size())
            .ok_or_else(|| ReuseError {
                requested: None,
                capacity: self.byte_capacity(),
            })?;
        self.reuse_bytes(bytes)
    }

    /// Change the number of bytes without reallocation.
    ///
    /// Returns `Ok` when the resizing was successfully completed to the requested size and returns
    /// `Err` with the new byte size otherwise.
    pub fn reuse_bytes(&mut self, bytes: usize) -> Result<(), ReuseError> {
        if bytes > self.byte_capacity() {
            return Err(ReuseError {
                requested: Some(bytes),
                capacity: self.capacity(),
            });
        }

        // Resize within capacity will not reallocate, thus not panic.
        Ok(self.resize_bytes(bytes))
    }

    /// Reallocate the slice to contain exactly as many bytes as necessary.
    ///
    /// The number of contained elements is not changed. However, the number of elements
    /// interpreted as a different type may change.
    ///
    /// ```
    /// # use canvas::Rec;
    /// let rec_u8 = Rec::<u8>::new(7);
    /// assert_eq!(rec_u8.len(), 7);
    ///
    /// let mut rec_u32 = rec_u8.reinterpret::<u32>();
    /// assert_eq!(rec_u32.len(), 1);
    /// rec_u32.shrink_to_fit();
    ///
    /// let rec_u8 = rec_u32.reinterpret::<u8>();
    /// assert_eq!(rec_u8.len(), 4);
    /// ```
    ///
    /// # Panics
    ///
    /// This function will panic if the allocation fails.
    pub fn shrink_to_fit(&mut self) {
        let exact_size = mem_size(self.pixel, self.len());
        self.inner.resize_to(exact_size);
        self.length = exact_size;
    }

    pub fn as_slice(&self) -> &[P] {
        self.buf().as_pixels(self.pixel)
    }

    pub fn as_mut_slice(&mut self) -> &mut [P] {
        let pixel = self.pixel;
        self.buf_mut().as_mut_pixels(pixel)
    }

    /// The number of accessible elements for the current type.
    pub fn len(&self) -> usize {
        self.as_slice().len()
    }

    /// The number of elements that can fit without reallocation.
    pub fn capacity(&self) -> usize {
        self.inner.capacity() / self.pixel.size()
    }

    pub fn as_bytes(&self) -> &[u8] {
        self.buf().as_bytes()
    }

    pub fn as_bytes_mut(&mut self) -> &mut [u8] {
        self.buf_mut().as_bytes_mut()
    }

    /// The total number of managed bytes.
    ///
    /// This will not change even through a reinterpretation casts. This corresponds to the
    /// capacity of the storage.
    pub fn byte_len(&self) -> usize {
        self.as_bytes().len()
    }

    /// The total number of managable bytes.
    pub fn byte_capacity(&self) -> usize {
        self.inner.capacity()
    }

    /// Reinterpret the buffer for a different type of pixel.
    ///
    /// See `reinterpret_to` for details.
    pub fn reinterpret<Q>(self) -> Rec<Q>
    where
        Q: AsPixel + AsBytes + FromBytes,
    {
        self.reinterpret_to(Q::pixel())
    }

    /// Reinterpret the buffer for a different type of pixel.
    ///
    /// Note that this may leave some of the underlying pixels unaccessible if the new type is
    /// larger than the old one and the allocation was not a multiple of the new size. Conversely,
    /// some new bytes may become accessible if the memory length was not a multiple of the
    /// previous pixel type's length.
    pub fn reinterpret_to<Q>(self, pixel: Pixel<Q>) -> Rec<Q>
    where
        Q: AsBytes + FromBytes,
    {
        Rec {
            inner: self.inner,
            length: self.length,
            pixel,
        }
    }

    /// Map all elements to another value.
    ///
    /// See [`map_to`] for details.
    pub fn map<Q>(self, f: impl Fn(P) -> Q) -> Rec<Q>
        where P: Copy, Q: AsPixel + AsBytes + FromBytes + Copy,
    {
        self.map_to(f, Q::pixel())
    }

    /// Map elements to another value.
    ///
    /// This will keep the logical length of the `Rec` so that the number of pixels stays constant.
    /// If necessary, it will grow the internal buffer to achieve this.
    ///
    /// # Panics
    ///
    /// This function will panic if the allocation fails or the necessary allocation exceeds the
    /// value range of `usize`.
    pub fn map_to<Q>(mut self, f: impl Fn(P) -> Q, pixel: Pixel<Q>) -> Rec<Q>
        where P: Copy, Q: AsBytes + FromBytes + Copy,
    {
        // Ensure we have enough memory for both representations.
        let length = self.as_slice().len();
        let new_bytes = mem_size(pixel, length);
        self.inner.grow_to(new_bytes);
        self.inner.map_within(..length, 0, f, self.pixel, pixel);
        Rec {
            inner: self.inner,
            length: new_bytes,
            pixel,
        }
    }

    fn buf(&self) -> &buf {
        &self.inner[..self.length]
    }

    fn buf_mut(&mut self) -> &mut buf {
        &mut self.inner[..self.length]
    }
}

fn mem_size<P>(pixel: Pixel<P>, count: usize) -> usize {
    pixel
        .size()
        .checked_mul(count)
        .unwrap_or_else(|| panic!("Requested count overflows memory size"))
}

impl<P: AsBytes + FromBytes> Deref for Rec<P> {
    type Target = [P];

    fn deref(&self) -> &[P] {
        self.as_slice()
    }
}

impl<P: AsBytes + FromBytes> DerefMut for Rec<P> {
    fn deref_mut(&mut self) -> &mut [P] {
        self.as_mut_slice()
    }
}

impl<P: AsBytes + FromBytes> Clone for Rec<P> {
    fn clone(&self) -> Self {
        Rec {
            inner: self.inner.clone(),
            ..*self
        }
    }
}

impl<P: AsBytes + FromBytes + AsPixel> Default for Rec<P> {
    fn default() -> Self {
        Rec {
            inner: Buffer::default(),
            length: 0,
            pixel: P::pixel(),
        }
    }
}

impl<P: AsBytes + FromBytes + cmp::PartialEq> cmp::PartialEq for Rec<P> {
    fn eq(&self, other: &Self) -> bool {
        self.as_slice().eq(other.as_slice())
    }
}

impl<P: AsBytes + FromBytes + cmp::Eq> cmp::Eq for Rec<P> {}

impl<P: AsBytes + FromBytes + cmp::PartialOrd> cmp::PartialOrd for Rec<P> {
    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
        self.as_slice().partial_cmp(other.as_slice())
    }
}

impl<P: AsBytes + FromBytes + cmp::Ord> cmp::Ord for Rec<P> {
    fn cmp(&self, other: &Self) -> cmp::Ordering {
        self.as_slice().cmp(other.as_slice())
    }
}

impl<P: AsBytes + FromBytes + fmt::Debug> fmt::Debug for Rec<P> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_list().entries(self.as_slice().iter()).finish()
    }
}

impl fmt::Debug for ReuseError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.requested {
            None => write!(f, "Buffer reuse failed: Bytes count can not be expressed"),
            Some(requested) => write!(
                f,
                "Buffer reuse failed: {} bytes requested, only {} available",
                requested, self.capacity
            ),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn resize() {
        let mut buffer: Rec<u8> = Rec::new(0);
        assert_eq!(buffer.capacity(), 0);
        assert_eq!(buffer.len(), 0);
        buffer.resize(4);
        assert!(buffer.capacity() >= 4);
        assert_eq!(buffer.len(), 4);
        buffer.resize(2);
        assert!(buffer.capacity() >= 2);
        assert_eq!(buffer.len(), 2);
        buffer.resize(0);
        buffer.shrink_to_fit();
        assert_eq!(buffer.capacity(), 0);
        assert_eq!(buffer.len(), 0);
    }

    #[test]
    fn map() {
        let mut buffer: Rec<u8> = Rec::new(8);
        assert_eq!(buffer.len(), 8);
        buffer.copy_from_slice(&[0, 1, 2, 3, 4, 5, 6, 7]);

        let buffer = buffer.map(u32::from);
        assert_eq!(buffer.len(), 8);
        assert_eq!(buffer.as_slice(), &[0, 1, 2, 3, 4, 5, 6, 7]);

        let buffer = buffer.map(|p| p as u8);
        assert_eq!(buffer.len(), 8);
        assert_eq!(buffer.as_slice(), &[0, 1, 2, 3, 4, 5, 6, 7]);
    }
}