1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
//! Functionality relating to the JSON array type

use std::alloc::{alloc, dealloc, realloc, Layout, LayoutErr};
use std::borrow::{Borrow, BorrowMut};
use std::cmp::{self, Ordering};
use std::fmt::{self, Debug, Formatter};
use std::hash::Hash;
use std::iter::FromIterator;
use std::mem::{self, MaybeUninit};
use std::ops::{Deref, DerefMut, Index, IndexMut};
use std::slice::SliceIndex;

use super::value::{IValue, TypeTag};

#[repr(C)]
#[repr(align(4))]
struct Header {
    len: usize,
    cap: usize,
}

impl Header {
    fn as_ptr(&self) -> *const IValue {
        // Safety: pointers to the end of structs are allowed
        unsafe { (self as *const Header).add(1) as *const IValue }
    }
    fn as_slice(&self) -> &[IValue] {
        // Safety: Header `len` must be accurate
        unsafe { std::slice::from_raw_parts(self.as_ptr(), self.len) }
    }
    fn as_mut_slice(&mut self) -> &mut [IValue] {
        // Safety: Header `len` must be accurate
        unsafe { std::slice::from_raw_parts_mut(self.as_ptr() as *mut _, self.len) }
    }
    fn as_mut_uninit_slice(&mut self) -> &mut [MaybeUninit<IValue>] {
        // Safety: Header `len` must be accurate
        unsafe { std::slice::from_raw_parts_mut(self.as_ptr() as *mut _, self.cap) }
    }
    // Safety: Space must already be allocated for the item
    unsafe fn push(&mut self, item: IValue) {
        let index = self.len;
        self.as_mut_uninit_slice()
            .get_unchecked_mut(index)
            .as_mut_ptr()
            .write(item);
        self.len += 1;
    }
    fn pop(&mut self) -> Option<IValue> {
        if self.len == 0 {
            None
        } else {
            self.len -= 1;
            let index = self.len;

            // Safety: We just checked that an item exists
            unsafe {
                Some(
                    self.as_mut_uninit_slice()
                        .get_unchecked_mut(index)
                        .as_mut_ptr()
                        .read(),
                )
            }
        }
    }
}

/// Iterator over [`IValue`]s returned from [`IArray::into_iter`]
pub struct IntoIter {
    header: *mut Header,
    index: usize,
}

impl Iterator for IntoIter {
    type Item = IValue;

    fn next(&mut self) -> Option<Self::Item> {
        if self.header.is_null() {
            None
        } else {
            // Safety: we set the pointer to null when it's deallocated
            unsafe {
                let len = (*self.header).len;
                let res = (*self.header)
                    .as_mut_uninit_slice()
                    .get_unchecked_mut(self.index)
                    .as_ptr()
                    .read();
                self.index += 1;
                if self.index >= len {
                    IArray::dealloc(self.header as *mut u8);
                    self.header = std::ptr::null_mut();
                }
                Some(res)
            }
        }
    }
}

impl ExactSizeIterator for IntoIter {
    fn len(&self) -> usize {
        if self.header.is_null() {
            0
        } else {
            // Safety: we set the pointer to null when it's deallocated
            unsafe { (*self.header).len - self.index }
        }
    }
}

impl Debug for IntoIter {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        f.debug_struct("IntoIter")
            .field("index", &self.index)
            .finish()
    }
}

impl Drop for IntoIter {
    fn drop(&mut self) {
        while self.next().is_some() {}
    }
}

/// The `IArray` type is similar to a `Vec<IValue>`. The primary difference is
/// that the length and capacity are stored _inside_ the heap allocation, so that
/// the `IArray` itself can be a single pointer.
#[repr(transparent)]
#[derive(Clone)]
pub struct IArray(pub(crate) IValue);

value_subtype_impls!(IArray, into_array, as_array, as_array_mut);

static EMPTY_HEADER: Header = Header { len: 0, cap: 0 };

impl IArray {
    fn layout(cap: usize) -> Result<Layout, LayoutErr> {
        Ok(Layout::new::<Header>()
            .extend(Layout::array::<usize>(cap)?)?
            .0
            .pad_to_align())
    }

    fn alloc(cap: usize) -> *mut u8 {
        unsafe {
            let ptr = alloc(Self::layout(cap).unwrap()) as *mut Header;
            (*ptr).len = 0;
            (*ptr).cap = cap;
            ptr as *mut u8
        }
    }

    fn realloc(ptr: *mut u8, new_cap: usize) -> *mut u8 {
        unsafe {
            let old_layout = Self::layout((*(ptr as *const Header)).cap).unwrap();
            let new_layout = Self::layout(new_cap).unwrap();
            let ptr = realloc(ptr as *mut u8, old_layout, new_layout.size());
            (*(ptr as *mut Header)).cap = new_cap;
            ptr
        }
    }

    fn dealloc(ptr: *mut u8) {
        unsafe {
            let layout = Self::layout((*(ptr as *const Header)).cap).unwrap();
            dealloc(ptr, layout);
        }
    }

    /// Constructs a new empty `IArray`. Does not allocate.
    pub fn new() -> Self {
        unsafe { IArray(IValue::new_ref(&EMPTY_HEADER, TypeTag::ArrayOrFalse)) }
    }

    /// Constructs a new `IArray` with the specified capacity. At least that many items
    /// can be added to the array without reallocating.
    pub fn with_capacity(cap: usize) -> Self {
        if cap == 0 {
            Self::new()
        } else {
            IArray(unsafe { IValue::new_ptr(Self::alloc(cap), TypeTag::ArrayOrFalse) })
        }
    }

    fn header(&self) -> &Header {
        unsafe { &*(self.0.ptr() as *const Header) }
    }

    // Safety: must not be static
    unsafe fn header_mut(&mut self) -> &mut Header {
        &mut *(self.0.ptr() as *mut Header)
    }

    fn is_static(&self) -> bool {
        self.capacity() == 0
    }
    /// Returns the capacity of the array. This is the maximum number of items the array
    /// can hold without reallocating.
    pub fn capacity(&self) -> usize {
        self.header().cap
    }

    /// Returns the number of items currently stored in the array.
    pub fn len(&self) -> usize {
        self.header().len
    }

    /// Returns `true` if the array is empty.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Borrows a slice of [`IValue`]s from the array
    pub fn as_slice(&self) -> &[IValue] {
        self.header().as_slice()
    }

    /// Borrows a mutable slice of [`IValue`]s from the array
    pub fn as_mut_slice(&mut self) -> &mut [IValue] {
        if self.is_static() {
            &mut []
        } else {
            unsafe { self.header_mut().as_mut_slice() }
        }
    }
    fn resize_internal(&mut self, cap: usize) {
        if self.is_static() || cap == 0 {
            *self = Self::with_capacity(cap);
        } else {
            unsafe {
                let new_ptr = Self::realloc(self.0.ptr(), cap);
                self.0.set_ptr(new_ptr);
            }
        }
    }

    /// Reserves space for at least this many additional items.
    pub fn reserve(&mut self, additional: usize) {
        let hd = self.header();
        let current_capacity = hd.cap;
        let desired_capacity = hd.len.checked_add(additional).unwrap();
        if current_capacity >= desired_capacity {
            return;
        }
        self.resize_internal(cmp::max(current_capacity * 2, desired_capacity.max(4)));
    }

    /// Truncates the array by removing items until it is no longer than the specified
    /// length. The capacity is unchanged.
    pub fn truncate(&mut self, len: usize) {
        if self.is_static() {
            return;
        }
        unsafe {
            let hd = self.header_mut();
            while hd.len > len {
                hd.pop();
            }
        }
    }

    /// Removes all items from the array. The capacity is unchanged.
    pub fn clear(&mut self) {
        self.truncate(0);
    }

    /// Inserts a new item into the array at the specified index. Any existing items
    /// on or after this index will be shifted down to accomodate this. For large
    /// arrays, insertions near the front will be slow as it will require shifting
    /// a large number of items.
    pub fn insert(&mut self, index: usize, item: impl Into<IValue>) {
        self.reserve(1);

        unsafe {
            // Safety: cannot be static after calling `reserve`
            let hd = self.header_mut();
            assert!(index <= hd.len);

            // Safety: We just reserved enough space for at least one extra item
            hd.push(item.into());
            if index < hd.len {
                hd.as_mut_slice()[index..].rotate_right(1);
            }
        }
    }

    /// Removes and returns the item at the specified index from the array. Any
    /// items after this index will be shifted back up to close the gap. For large
    /// arrays, removals from near the front will be slow as it will require shifting
    /// a large number of items.
    ///
    /// If the order of the array is unimporant, consider using [`IArray::swap_remove`].
    ///
    /// If the index is outside the array bounds, `None` is returned.
    pub fn remove(&mut self, index: usize) -> Option<IValue> {
        if index < self.len() {
            // Safety: cannot be static if index <= len
            unsafe {
                let hd = self.header_mut();
                hd.as_mut_slice()[index..].rotate_left(1);
                hd.pop()
            }
        } else {
            None
        }
    }

    /// Removes and returns the item at the specified index from the array by
    /// first swapping it with the item currently at the end of the array, and
    /// then popping that last item.
    ///
    /// This can be more efficient than [`IArray::remove`] for large arrays,
    /// but will change the ordering of items within the array.
    ///
    /// If the index is outside the array bounds, `None` is returned.
    pub fn swap_remove(&mut self, index: usize) -> Option<IValue> {
        if index < self.len() {
            // Safety: cannot be static if index <= len
            unsafe {
                let hd = self.header_mut();
                let last_index = hd.len - 1;
                hd.as_mut_slice().swap(index, last_index);
                hd.pop()
            }
        } else {
            None
        }
    }

    /// Pushes a new item onto the back of the array.
    pub fn push(&mut self, item: impl Into<IValue>) {
        self.reserve(1);
        // Safety: We just reserved enough space for at least one extra item
        unsafe {
            self.header_mut().push(item.into());
        }
    }

    /// Pops the last item from the array and returns it. If the array is
    /// empty, `None` is returned.
    pub fn pop(&mut self) -> Option<IValue> {
        if self.is_static() {
            None
        } else {
            // Safety: not static
            unsafe { self.header_mut().pop() }
        }
    }

    /// Shrinks the memory allocation used by the array such that its
    /// capacity becomes equal to its length.
    pub fn shrink_to_fit(&mut self) {
        self.resize_internal(self.len());
    }

    pub(crate) fn clone_impl(&self) -> IValue {
        let src = self.header().as_slice();
        let l = src.len();
        let mut res = Self::with_capacity(l);

        if l > 0 {
            unsafe {
                // Safety: we cannot be static if len > 0
                let hd = res.header_mut();
                for v in src {
                    // Safety: we reserved enough space at the start
                    hd.push(v.clone());
                }
            }
        }
        res.0
    }
    pub(crate) fn drop_impl(&mut self) {
        self.clear();
        if !self.is_static() {
            unsafe {
                Self::dealloc(self.0.ptr());
                self.0.set_ref(&EMPTY_HEADER);
            }
        }
    }
}

impl IntoIterator for IArray {
    type Item = IValue;
    type IntoIter = IntoIter;

    fn into_iter(mut self) -> Self::IntoIter {
        if self.is_static() {
            IntoIter {
                header: std::ptr::null_mut(),
                index: 0,
            }
        } else {
            // Safety: not static
            unsafe {
                let header = self.header_mut() as *mut _;
                mem::forget(self);
                IntoIter { header, index: 0 }
            }
        }
    }
}

impl Deref for IArray {
    type Target = [IValue];

    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

impl DerefMut for IArray {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut_slice()
    }
}

impl Borrow<[IValue]> for IArray {
    fn borrow(&self) -> &[IValue] {
        self.as_slice()
    }
}

impl BorrowMut<[IValue]> for IArray {
    fn borrow_mut(&mut self) -> &mut [IValue] {
        self.as_mut_slice()
    }
}

impl Hash for IArray {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.as_slice().hash(state);
    }
}

impl<U: Into<IValue>> Extend<U> for IArray {
    fn extend<T: IntoIterator<Item = U>>(&mut self, iter: T) {
        let iter = iter.into_iter();
        self.reserve(iter.size_hint().0);
        for v in iter {
            self.push(v);
        }
    }
}

impl<U: Into<IValue>> FromIterator<U> for IArray {
    fn from_iter<T: IntoIterator<Item = U>>(iter: T) -> Self {
        let mut res = IArray::new();
        res.extend(iter);
        res
    }
}

impl AsRef<[IValue]> for IArray {
    fn as_ref(&self) -> &[IValue] {
        self.as_slice()
    }
}

impl PartialEq for IArray {
    fn eq(&self, other: &Self) -> bool {
        if self.0.raw_eq(&other.0) {
            true
        } else {
            self.as_slice() == other.as_slice()
        }
    }
}

impl Eq for IArray {}
impl PartialOrd for IArray {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        if self.0.raw_eq(&other.0) {
            Some(Ordering::Equal)
        } else {
            self.as_slice().partial_cmp(other.as_slice())
        }
    }
}

impl<I: SliceIndex<[IValue]>> Index<I> for IArray {
    type Output = I::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output {
        Index::index(self.as_slice(), index)
    }
}

impl<I: SliceIndex<[IValue]>> IndexMut<I> for IArray {
    #[inline]
    fn index_mut(&mut self, index: I) -> &mut Self::Output {
        IndexMut::index_mut(self.as_mut_slice(), index)
    }
}

impl Debug for IArray {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        Debug::fmt(self.as_slice(), f)
    }
}

impl<T: Into<IValue>> From<Vec<T>> for IArray {
    fn from(other: Vec<T>) -> Self {
        let mut res = IArray::with_capacity(other.len());
        res.extend(other.into_iter().map(Into::into));
        res
    }
}

impl<T: Into<IValue> + Clone> From<&[T]> for IArray {
    fn from(other: &[T]) -> Self {
        let mut res = IArray::with_capacity(other.len());
        res.extend(other.iter().cloned().map(Into::into));
        res
    }
}

impl<'a> IntoIterator for &'a IArray {
    type Item = &'a IValue;
    type IntoIter = std::slice::Iter<'a, IValue>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a> IntoIterator for &'a mut IArray {
    type Item = &'a mut IValue;
    type IntoIter = std::slice::IterMut<'a, IValue>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

impl Default for IArray {
    fn default() -> Self {
        Self::new()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[mockalloc::test]
    fn can_create() {
        let x = IArray::new();
        let y = IArray::with_capacity(10);

        assert_eq!(x, y);
    }

    #[mockalloc::test]
    fn can_collect() {
        let x = vec![IValue::NULL, IValue::TRUE, IValue::FALSE];
        let y: IArray = x.iter().cloned().collect();

        assert_eq!(x.as_slice(), y.as_slice());
    }

    #[mockalloc::test]
    fn can_push_insert() {
        let mut x = IArray::new();
        x.insert(0, IValue::NULL);
        x.push(IValue::TRUE);
        x.insert(1, IValue::FALSE);

        assert_eq!(x.as_slice(), &[IValue::NULL, IValue::FALSE, IValue::TRUE]);
    }

    #[mockalloc::test]
    fn can_nest() {
        let x: IArray = vec![IValue::NULL, IValue::TRUE, IValue::FALSE].into();
        let y: IArray = vec![
            IValue::NULL,
            x.clone().into(),
            IValue::FALSE,
            x.clone().into(),
        ]
        .into();

        assert_eq!(&y[1], x.as_ref());
    }

    #[mockalloc::test]
    fn can_pop_remove() {
        let mut x: IArray = vec![IValue::NULL, IValue::TRUE, IValue::FALSE].into();
        assert_eq!(x.remove(1), Some(IValue::TRUE));
        assert_eq!(x.pop(), Some(IValue::FALSE));

        assert_eq!(x.as_slice(), &[IValue::NULL]);
    }

    #[mockalloc::test]
    fn can_swap_remove() {
        let mut x: IArray = vec![IValue::NULL, IValue::TRUE, IValue::FALSE].into();
        assert_eq!(x.swap_remove(0), Some(IValue::NULL));

        assert_eq!(x.as_slice(), &[IValue::FALSE, IValue::TRUE]);
    }

    #[mockalloc::test]
    fn can_index() {
        let mut x: IArray = vec![IValue::NULL, IValue::TRUE, IValue::FALSE].into();
        assert_eq!(x[1], IValue::TRUE);
        x[1] = IValue::FALSE;
        assert_eq!(x[1], IValue::FALSE);
    }

    #[mockalloc::test]
    fn can_truncate_and_shrink() {
        let mut x: IArray =
            vec![IValue::NULL, IValue::TRUE, IArray::with_capacity(10).into()].into();
        x.truncate(2);
        assert_eq!(x.len(), 2);
        assert_eq!(x.capacity(), 3);
        x.shrink_to_fit();
        assert_eq!(x.len(), 2);
        assert_eq!(x.capacity(), 2);
    }

    // Too slow for miri
    #[cfg(not(miri))]
    #[mockalloc::test]
    fn stress_test() {
        use rand::prelude::*;

        for i in 0..10 {
            // We want our test to be random but for errors to be reproducible
            let mut rng = StdRng::seed_from_u64(i);
            let mut arr = IArray::new();

            for j in 0..1000 {
                let index = rng.gen_range(0, arr.len() + 1);
                if rng.gen() {
                    arr.insert(index, j);
                } else {
                    arr.remove(index);
                }
            }
        }
    }
}