1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
//! Low-level manipulations of IEEE754 floating-point numbers.
//!
//! # Installation
//!
//! Add this to your Cargo.toml
//!
//! ```toml
//! [dependencies]
//! ieee754 = "0.2"
//! ```
//!
//! # Examples
//!
//! ```rust
//! use ieee754::Ieee754;
//!
//! // there are 840 single-precision floats between 1.0 and 1.0001
//! // (inclusive).
//! assert_eq!(1_f32.upto(1.0001).count(), 840);
//! ```

#![no_std]
#[cfg(test)] #[macro_use] extern crate std;

use core::mem;
use core::cmp::Ordering;

/// An iterator over floating point numbers, created by `Ieee754::upto`.
pub struct Iter<T: Ieee754> {
    from: T,
    to: T,
    done: bool
}
impl<T: Ieee754> Iterator for Iter<T> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        if self.done { return None }

        let x = self.from;
        let y = x.next();
        // we've canonicalised negative zero to positive zero, and
        // we're guaranteed that neither is NaN, so comparing bitwise
        // is valid (and 20% faster for the `all` example).
        if x.bits() == self.to.bits() {
            self.done = true;
        }
        self.from = y;
        return Some(x)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.done {
            return (0, Some(0))
        }

        let high_pos = 8 * mem::size_of::<T>() - 1;
        let high_mask = 1 << high_pos;

        let from_ = self.from.bits().as_u64();
        let (from, from_sign) = (from_ & !high_mask,
                                 from_ & high_mask != 0);
        let to_ = self.to.bits().as_u64();
        let (to, to_sign) = (to_ & !high_mask,
                             to_ & high_mask != 0);
        let from = if from_sign { -(from as i64) } else { from as i64 };
        let to = if to_sign { -(to as i64) } else { to as i64 };

        let distance = (to - from + 1) as u64;
        if distance <= core::usize::MAX as u64 {
            let d = distance as usize;
            (d, Some(d))
        } else {
            (core::usize::MAX, None)
        }
    }
}
impl<T: Ieee754> DoubleEndedIterator for Iter<T> {
    fn next_back(&mut self) -> Option<T> {
        if self.done { return None }

        let x = self.to;
        let y = x.prev();
        if x == self.from {
            self.done = true;
        }
        self.to = y;
        return Some(x)
    }
}

pub trait Bits: Eq + PartialEq + PartialOrd + Ord + Copy {
    fn as_u64(self) -> u64;
}
impl Bits for u32 {
    fn as_u64(self) -> u64 { self as u64 }
}
impl Bits for u64 {
    fn as_u64(self) -> u64 { self }
}

/// Types that are IEEE754 floating point numbers.
pub trait Ieee754: Copy + PartialEq + PartialOrd {
    /// Iterate over each value of `Self` in `[self, lim]`.
    ///
    /// The returned iterator will include subnormal numbers, and will
    /// only include one of `-0.0` and `0.0`.
    ///
    /// # Panics
    ///
    /// Panics if `self > lim`, or if either are NaN.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    ///
    /// // there are 840 single-precision floats in between 1.0 and 1.0001
    /// // (inclusive).
    /// assert_eq!(1_f32.upto(1.0001).count(), 840);
    /// ```
    fn upto(self, lim: Self) -> Iter<Self>;

    /// A type that represents the raw bits of `Self`.
    type Bits: Bits;
    /// A type large enough to store the true exponent of `Self`.
    type Exponent;
    /// A type large enough to store the raw exponent (i.e. with the bias).
    type RawExponent;
    /// A type large enough to store the significand of `Self`.
    type Significand;

    /// Return the next value after `self`.
    ///
    /// Calling this on NaN or positive infinity will yield nonsense.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    /// let x: f32 = 1.0;
    /// assert_eq!(x.next(), 1.000000119209);
    /// ```
    fn next(self) -> Self;

    /// Return the unit-in-the-last-place ulp of `self`. That is,
    /// `x.abs().next() - x.abs()`, but handling overflow properly.
    ///
    /// Returns `None` if `self` is not finite.
    fn ulp(self) -> Option<Self>;

    /// Return the previous value before `self`.
    ///
    /// Calling this on NaN or negative infinity will yield nonsense.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    /// let x: f32 = 1.0;
    /// assert_eq!(x.prev(), 0.99999995);
    /// ```
    fn prev(self) -> Self;
    /// View `self` as a collection of bits.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    /// let x: f32 = 1.0;
    /// assert_eq!(x.bits(), 0x3f80_0000);
    /// ```
    fn bits(self) -> Self::Bits;
    /// View a collections of bits as a floating point number.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    /// let float: f32 = Ieee754::from_bits(0xbf80_0000);
    /// assert_eq!(float, -1.0);
    /// ```
    fn from_bits(x: Self::Bits) -> Self;
    /// Get the bias of the stored exponent.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    ///
    /// assert_eq!(f32::exponent_bias(), 127);
    /// assert_eq!(f64::exponent_bias(), 1023);
    /// ```
    fn exponent_bias() -> Self::Exponent;
    /// Break `self` into the three constituent parts of an IEEE754 float.
    ///
    /// The exponent returned is the raw bits, use `exponent_bias` to
    /// compute the offset required or use `decompose` to obtain this
    /// in precomputed form.
    ///
    /// # Examples
    ///
    /// Single precision:
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    ///
    /// assert_eq!(1_f32.decompose_raw(), (false, 127, 0));
    /// assert_eq!(1234.567_f32.decompose_raw(), (false, 137, 0x1a5225));
    ///
    /// assert_eq!((-0.525_f32).decompose_raw(), (true, 126, 0x66666));
    ///
    /// assert_eq!(std::f32::INFINITY.decompose_raw(), (false, 255, 0));
    ///
    /// let (sign, expn, signif) = std::f32::NAN.decompose_raw();
    /// assert_eq!((sign, expn), (false, 255));
    /// assert!(signif != 0);
    /// ```
    ///
    /// Double precision:
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    ///
    /// assert_eq!(1_f64.decompose_raw(), (false, 1023, 0));
    /// assert_eq!(1234.567_f64.decompose_raw(), (false, 1033, 0x34a449ba5e354));
    ///
    /// assert_eq!((-0.525_f64).decompose_raw(), (true, 1022, 0xcccc_cccc_cccd));
    ///
    /// assert_eq!(std::f64::INFINITY.decompose_raw(), (false, 2047, 0));
    ///
    /// let (sign, expn, signif) = std::f64::NAN.decompose_raw();
    /// assert_eq!((sign, expn), (false, 2047));
    /// assert!(signif != 0);
    /// ```
    fn decompose_raw(self) -> (bool, Self::RawExponent, Self::Significand);

    /// Create a `Self` out of the three constituent parts of an IEEE754 float.
    ///
    /// The exponent should be the raw bits, use `exponent_bias` to
    /// compute the offset required, or use `recompose` to feed in the
    /// unbiased exponent.
    ///
    /// # Examples
    ///
    /// Single precision:
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    ///
    /// assert_eq!(f32::recompose_raw(false, 127, 0), 1.0);
    /// assert_eq!(f32::recompose_raw(false, 137, 0x1a5225), 1234.567);
    /// assert_eq!(f32::recompose_raw(true, 126, 0x66666), -0.525);
    ///
    /// assert_eq!(f32::recompose_raw(false, 255, 0), std::f32::INFINITY);
    ///
    /// assert!(f32::recompose_raw(false, 255, 1).is_nan());
    /// ```
    ///
    /// Double precision:
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    ///
    /// assert_eq!(f64::recompose_raw(false, 1023, 0), 1.0);
    /// assert_eq!(f64::recompose_raw(false, 1033, 0x34a449ba5e354), 1234.567);
    /// assert_eq!(f64::recompose_raw(true, 1022, 0xcccc_cccc_cccd), -0.525);
    ///
    /// assert_eq!(f64::recompose_raw(false, 2047, 0), std::f64::INFINITY);
    ///
    /// assert!(f64::recompose_raw(false, 2047, 1).is_nan());
    /// ```
    fn recompose_raw(sign: bool, expn: Self::RawExponent, signif: Self::Significand) -> Self;

    /// Break `self` into the three constituent parts of an IEEE754 float.
    ///
    /// The exponent returned is the true exponent, after accounting
    /// for the bias it is stored with. The significand does not
    /// include the implicit highest bit (if it exists), e.g. the
    /// 24-bit for single precision.
    ///
    /// # Examples
    ///
    /// Single precision:
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    ///
    /// assert_eq!(1_f32.decompose(), (false, 0, 0));
    /// assert_eq!(1234.567_f32.decompose(), (false, 10, 0x1a5225));
    ///
    /// assert_eq!((-0.525_f32).decompose(), (true, -1, 0x66666));
    ///
    /// assert_eq!(std::f32::INFINITY.decompose(), (false, 128, 0));
    ///
    /// let (sign, expn, signif) = std::f32::NAN.decompose();
    /// assert_eq!((sign, expn), (false, 128));
    /// assert!(signif != 0);
    /// ```
    ///
    /// Double precision:
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    ///
    /// assert_eq!(1_f64.decompose(), (false, 0, 0));
    /// assert_eq!(1234.567_f64.decompose(), (false, 10, 0x34a449ba5e354));
    ///
    /// assert_eq!((-0.525_f64).decompose(), (true, -1, 0xcccc_cccc_cccd));
    ///
    /// assert_eq!(std::f64::INFINITY.decompose(), (false, 1024, 0));
    ///
    /// let (sign, expn, signif) = std::f64::NAN.decompose();
    /// assert_eq!((sign, expn), (false, 1024));
    /// assert!(signif != 0);
    /// ```
    fn decompose(self) -> (bool, Self::Exponent, Self::Significand);

    /// Create a `Self` out of the three constituent parts of an IEEE754 float.
    ///
    /// The exponent should be true exponent, not accounting for any
    /// bias. The significand should not include the implicit highest
    /// bit (if it exists), e.g. the 24-th bit for signle precision.
    ///
    /// # Examples
    ///
    /// Single precision:
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    ///
    /// assert_eq!(f32::recompose(false, 0, 0), 1.0);
    /// assert_eq!(f32::recompose(false, 10, 0x1a5225), 1234.567);
    /// assert_eq!(f32::recompose(true, -1, 0x66666), -0.525);
    ///
    /// assert_eq!(f32::recompose(false, 128, 0), std::f32::INFINITY);
    ///
    /// assert!(f32::recompose(false, 128, 1).is_nan());
    /// ```
    ///
    /// Double precision:
    ///
    /// ```rust
    /// use ieee754::Ieee754;
    ///
    /// assert_eq!(f64::recompose(false, 0, 0), 1.0);
    /// assert_eq!(f64::recompose(false, 10, 0x34a449ba5e354), 1234.567);
    /// assert_eq!(f64::recompose(true, -1, 0xcccc_cccc_cccd), -0.525);
    ///
    /// assert_eq!(f64::recompose(false, 1024, 0), std::f64::INFINITY);
    ///
    /// assert!(f64::recompose(false, 1024, 1).is_nan());
    /// ```
    fn recompose(sign: bool, expn: Self::Exponent, signif: Self::Significand) -> Self;

    /// Compare `x` and `y` using the IEEE-754 `totalOrder` predicate
    /// (Section 5.10).
    ///
    /// This orders NaNs before or after all non-NaN floats, depending
    /// on the sign bit. Using -qNaN to represent a quiet NaN with
    /// negative sign bit and similarly for a signalling NaN (sNaN),
    /// the order is:
    ///
    /// ```txt
    /// -qNaN < -sNaN < -∞ < -12.34 < -0.0 < +0.0 < +12.34 < +∞ < +sNaN < +qNaN
    /// ```
    ///
    /// (NaNs are ordered according to their payload.)
    ///
    /// # Examples
    ///
    /// Single precision:
    ///
    /// ```rust
    /// use std::cmp::Ordering;
    /// use std::f32;
    ///
    /// use ieee754::Ieee754;
    ///
    /// assert_eq!(0_f32.total_cmp(&0_f32), Ordering::Equal);
    /// assert_eq!(0_f32.total_cmp(&-0_f32), Ordering::Greater);
    /// assert_eq!(0_f32.total_cmp(&1_f32), Ordering::Less);
    /// assert_eq!(1e10_f32.total_cmp(&f32::NEG_INFINITY), Ordering::Greater);
    /// assert_eq!(f32::NAN.total_cmp(&0_f32), Ordering::Greater);
    /// assert_eq!(f32::NAN.total_cmp(&f32::INFINITY), Ordering::Greater);
    /// assert_eq!((-f32::NAN).total_cmp(&f32::NEG_INFINITY), Ordering::Less);
    /// ```
    ///
    /// Double precision:
    ///
    /// ```rust
    /// use std::cmp::Ordering;
    /// use std::f64;
    ///
    /// use ieee754::Ieee754;
    ///
    /// assert_eq!(0_f64.total_cmp(&0_f64), Ordering::Equal);
    /// assert_eq!(0_f64.total_cmp(&-0_f64), Ordering::Greater);
    /// assert_eq!(0_f64.total_cmp(&1_f64), Ordering::Less);
    /// assert_eq!(1e10_f64.total_cmp(&f64::NEG_INFINITY), Ordering::Greater);
    /// assert_eq!(f64::NAN.total_cmp(&0_f64), Ordering::Greater);
    /// assert_eq!(f64::NAN.total_cmp(&f64::INFINITY), Ordering::Greater);
    /// assert_eq!((-f64::NAN).total_cmp(&f64::NEG_INFINITY), Ordering::Less);
    /// ```
    fn total_cmp(&self, other: &Self) -> Ordering;
}

macro_rules! mask{
    ($bits: expr; $current: expr => $($other: expr),*) => {
        ($bits >> (0 $(+ $other)*)) & ((1 << $current) - 1)
    }
}
macro_rules! unmask {
    ($x: expr => $($other: expr),*) => {
        $x << (0 $(+ $other)*)
    }
}

/// Return the absolute value of `x`.
///
/// This provides a no_std/core-only version of the built-in `abs` in
/// `std`, until
/// [#50145](https://github.com/rust-lang/rust/issues/50145) is
/// addressed.
///
/// ```rust
/// use std::{f32, f64};
///
/// assert_eq!(ieee754::abs(0_f32), 0.0);
/// assert_eq!(ieee754::abs(0_f64), 0.0);
///
/// assert_eq!(ieee754::abs(12.34_f32), 12.34);
/// assert_eq!(ieee754::abs(-12.34_f64), 12.34);
///
/// assert!(ieee754::abs(f32::NAN).is_nan());
/// assert_eq!(ieee754::abs(f64::NEG_INFINITY), f64::INFINITY);
/// ```
#[inline]
pub fn abs<F: Ieee754>(x: F) -> F {
    let (_, e, s) = x.decompose_raw();
    F::recompose_raw(false, e, s)
}

macro_rules! mk_impl {
    ($f: ident, $bits: ty, $signed_bits: ty,
     $expn: ty, $expn_raw: ty, $signif: ty,
     $expn_n: expr, $signif_n: expr) => {
        impl Ieee754 for $f {
            type Bits = $bits;
            type Exponent = $expn;
            type RawExponent = $expn_raw;
            type Significand = $signif;
            #[inline]
            fn upto(self, lim: Self) -> Iter<Self> {
                assert!(self <= lim);
                // map -0.0 to 0.0, i.e. ensure that any zero is
                // stored in a canonical manner. This is necessary to
                // use bit-hacks for the comparison in next.
                #[inline(always)]
                fn canon(x: $f) -> $f { if x == 0.0 { 0.0 } else { x } }

                Iter {
                    from: canon(self),
                    to: canon(lim),
                    done: false,
                }
            }
            #[inline]
            fn ulp(self) -> Option<Self> {
                let (_sign, expn, _signif) = self.decompose_raw();

                const MAX_EXPN: $expn_raw = ((1u64 << $expn_n) - 1) as $expn_raw;
                match expn {
                    MAX_EXPN => None,
                    0 => Some($f::recompose_raw(false, 0, 1)),
                    _ => {
                        let ulp_expn = expn.saturating_sub($signif_n);
                        if ulp_expn == 0 {
                            Some($f::recompose_raw(false, 0, 1 << (expn - 1)))
                        } else {
                            Some($f::recompose_raw(false, ulp_expn, 0))
                        }
                    }
                }
            }

            #[inline]
            fn next(self) -> Self {
                let abs_mask = (!(0 as Self::Bits)) >> 1;
                let mut bits = self.bits();
                if self == 0.0 {
                    bits = 1;
                } else if self < 0.0 {
                    bits -= 1;
                    if bits == !abs_mask {
                        // normalise -0.0 to +0.0
                        bits = 0
                    }
                } else {
                    bits += 1
                }
                Ieee754::from_bits(bits)
            }
            #[inline]
            fn prev(self) -> Self {
                let abs_mask = (!(0 as Self::Bits)) >> 1;
                let mut bits = self.bits();
                if self < 0.0 {
                     bits += 1;
                } else if bits & abs_mask == 0 {
                     bits = 1 | !abs_mask;
                } else {
                     bits -= 1;
                }
                Ieee754::from_bits(bits)
            }

            #[inline]
            fn exponent_bias() -> Self::Exponent {
                (1 << ($expn_n - 1)) - 1
            }

            #[inline]
            fn bits(self) -> Self::Bits {
                unsafe {mem::transmute(self)}
            }
            #[inline]
            fn from_bits(bits: Self::Bits) -> Self {
                unsafe {mem::transmute(bits)}
            }
            #[inline]
            fn decompose_raw(self) -> (bool, Self::RawExponent, Self::Significand) {
                let bits = self.bits();

                (mask!(bits; 1 => $expn_n, $signif_n) != 0,
                 mask!(bits; $expn_n => $signif_n) as Self::RawExponent,
                 mask!(bits; $signif_n => ) as Self::Significand)

            }
            #[inline]
            fn recompose_raw(sign: bool, expn: Self::RawExponent, signif: Self::Significand) -> Self {
                Ieee754::from_bits(
                    unmask!(sign as Self::Bits => $expn_n, $signif_n) |
                    unmask!(expn as Self::Bits => $signif_n) |
                    unmask!(signif as Self::Bits => ))
            }

            #[inline]
            fn decompose(self) -> (bool, Self::Exponent, Self::Significand) {
                let (sign, expn, signif) = self.decompose_raw();
                (sign, expn as Self::Exponent - Self::exponent_bias(),
                 signif)
            }
            #[inline]
            fn recompose(sign: bool, expn: Self::Exponent, signif: Self::Significand) -> Self {
                Self::recompose_raw(sign,
                                    (expn + Self::exponent_bias()) as Self::RawExponent,
                                    signif)
            }

            #[inline]
            fn total_cmp(&self, other: &Self) -> Ordering {
                #[inline]
                fn cmp_key(x: $f) -> $signed_bits {
                    let bits = x.bits();
                    let sign_bit = bits & (1 << ($expn_n + $signif_n));
                    let mask = ((sign_bit as $signed_bits) >> ($expn_n + $signif_n)) as $bits >> 1;
                    (bits ^ mask) as $signed_bits
                }
                cmp_key(*self).cmp(&cmp_key(*other))
            }
        }

        #[cfg(test)]
        mod $f {
            use std::prelude::v1::*;
            use std::$f;

            use {Ieee754, abs};
            #[test]
            fn upto() {
                assert_eq!((0.0 as $f).upto(0.0).collect::<Vec<_>>(),
                           &[0.0]);
                assert_eq!($f::recompose(false, 1, 1).upto($f::recompose(false, 1, 10)).count(),
                           10);

                assert_eq!($f::recompose(true, -$f::exponent_bias(), 10)
                           .upto($f::recompose(false, -$f::exponent_bias(), 10)).count(),
                           21);
            }
            #[test]
            fn upto_rev() {
                assert_eq!(0.0_f32.upto(0.0_f32).rev().collect::<Vec<_>>(),
                           &[0.0]);

                assert_eq!($f::recompose(false, 1, 1)
                           .upto($f::recompose(false, 1, 10)).rev().count(),
                           10);
                assert_eq!($f::recompose(true, -$f::exponent_bias(), 10)
                           .upto($f::recompose(false, -$f::exponent_bias(), 10)).rev().count(),
                           21);
            }

            #[test]
            fn upto_infinities() {
                use std::$f as f;
                assert_eq!(f::MAX.upto(f::INFINITY).collect::<Vec<_>>(),
                           &[f::MAX, f::INFINITY]);
                assert_eq!(f::NEG_INFINITY.upto(f::MIN).collect::<Vec<_>>(),
                           &[f::NEG_INFINITY, f::MIN]);
            }
            #[test]
            fn upto_infinities_rev() {
                use std::$f as f;
                assert_eq!(f::MAX.upto(f::INFINITY).rev().collect::<Vec<_>>(),
                           &[f::INFINITY, f::MAX]);
                assert_eq!(f::NEG_INFINITY.upto(f::MIN).rev().collect::<Vec<_>>(),
                           &[f::MIN, f::NEG_INFINITY]);
            }

            #[test]
            fn upto_size_hint() {
                let mut iter =
                    $f::recompose(true, -$f::exponent_bias(), 10)
                    .upto($f::recompose(false, -$f::exponent_bias(), 10));

                assert_eq!(iter.size_hint(), (21, Some(21)));
                for i in (0..21).rev() {
                    assert!(iter.next().is_some());
                    assert_eq!(iter.size_hint(), (i, Some(i)));
                }
                assert_eq!(iter.next(), None);
                assert_eq!(iter.size_hint(), (0, Some(0)))
            }

            #[test]
            fn upto_size_hint_rev() {
                let mut iter =
                    $f::recompose(true, -$f::exponent_bias(), 10)
                    .upto($f::recompose(false, -$f::exponent_bias(), 10))
                    .rev();

                assert_eq!(iter.size_hint(), (21, Some(21)));
                for i in (0..21).rev() {
                    assert!(iter.next().is_some());
                    assert_eq!(iter.size_hint(), (i, Some(i)));
                }
                assert_eq!(iter.next(), None);
                assert_eq!(iter.size_hint(), (0, Some(0)))
            }

            #[test]
            fn next_prev_order() {
                let cases = [0.0 as $f, -0.0, 1.0, 1.0001, 1e30, -1.0, -1.0001, -1e30];
                for &x in &cases {
                    assert!(x.next() > x);
                    assert!(x.prev() < x);
                }
            }

            #[test]
            fn ulp_smoke() {
                let smallest_subnormal = $f::recompose_raw(false, 0, 1);
                let smallest_normal = $f::recompose_raw(false, 1, 0);
                assert_eq!((0.0 as $f).ulp(), Some(smallest_subnormal));
                assert_eq!(smallest_subnormal.ulp(), Some(smallest_subnormal));
                assert_eq!($f::recompose_raw(true, 0, 9436).ulp(),
                           Some(smallest_subnormal));
                assert_eq!(smallest_normal.ulp(), Some(smallest_subnormal));

                assert_eq!((1.0 as $f).ulp(),
                           Some($f::recompose(false, -$signif_n, 0)));

                assert_eq!((-123.456e30 as $f).ulp(),
                           Some($f::recompose(false, 106 - $signif_n, 0)));

                assert_eq!($f::INFINITY.ulp(), None);
                assert_eq!($f::NEG_INFINITY.ulp(), None);
                assert_eq!($f::NAN.ulp(), None);
            }

            #[test]
            fn ulp_aggressive() {
                fn check_ulp(x: $f, ulp: $f) {
                    println!("  {:e} {:e}", x, ulp);
                    assert_eq!(x.ulp(), Some(ulp));
                    // with signed-magnitude we need to be moving away
                    let same_sign_ulp = if x < 0.0 { -ulp } else { ulp };

                    assert_ne!(x + same_sign_ulp, x, "adding ulp should be different");

                    if ulp / 2.0 > 0.0 {
                        // floats break ties like this by rounding to
                        // even (in the default mode), so adding half
                        // a ulp may be a new value depending on the
                        // significand.
                        if x.decompose().2 & 1 == 0 {
                            assert_eq!(x + same_sign_ulp / 2.0, x);
                        } else {
                            assert_eq!(x + same_sign_ulp / 2.0, x + same_sign_ulp);
                        }
                    }
                    // no ties to worry about
                    assert_eq!(x + same_sign_ulp / 4.0, x);
                }

                let smallest_subnormal = $f::recompose_raw(false, 0, 1);
                let mut ulp = smallest_subnormal;

                check_ulp(0.0, ulp);

                let mut pow2 = smallest_subnormal;
                for i in 0..200 {
                    println!("{}", i);
                    check_ulp(pow2, ulp);
                    check_ulp(-pow2, ulp);

                    let (_, e, _) = pow2.decompose_raw();
                    if e > 0 {
                        for &signif in &[1,
                                         // random numbers
                                         9436, 1577069,
                                         // last two for this exponent
                                         (1 << $signif_n) - 2, (1 << $signif_n) - 1] {
                            check_ulp($f::recompose_raw(false, e, signif), ulp);
                            check_ulp($f::recompose_raw(true, e, signif), ulp);
                        }
                    }

                    pow2 *= 2.0;
                    if i >= $signif_n {
                        ulp *= 2.0;
                    }
                }
            }

            #[test]
            fn test_abs() {
                assert!(abs($f::NAN).is_nan());

                let cases = [0.0 as $f, -1.0, 1.0001,
                             // denormals
                             $f::recompose_raw(false, 0, 123), $f::recompose(true, 0, 123),
                             $f::NEG_INFINITY, $f::INFINITY];
                for x in &cases {
                    assert_eq!(abs(*x), x.abs());
                }
            }

            #[test]
            fn total_cmp() {
                let nan_exp = $f::NAN.decompose_raw().1;
                let q = 1 << ($signif_n - 1);

                let qnan0 = $f::recompose_raw(false, nan_exp, q);
                let qnan1 = $f::recompose_raw(false, nan_exp, q | 1);
                let qnanlarge = $f::recompose_raw(false, nan_exp, q | (q - 1));

                let snan1 = $f::recompose_raw(false, nan_exp, 1);
                let snan2 = $f::recompose_raw(false, nan_exp, 2);
                let snanlarge = $f::recompose_raw(false, nan_exp, q - 1);

                let subnormal = $f::recompose_raw(false, 0, 1);

                // it's a total order, so we can literally write
                // options in order, and compare them all, using their
                // indices as ground-truth. NB. the snans seem to
                // get canonicalized to qnan on some versions of i686
                // Linux (using `cross` on Travis CI), so we can't
                // include them.
                let include_snan = cfg!(not(target_arch = "x86"));
                // -qNaN
                let mut cases = vec![-qnanlarge, -qnan1, -qnan0];
                // -sNaN
                if include_snan {
                    cases.extend_from_slice(&[-snanlarge, -snan2, -snan1]);
                }
                // Numbers (note -0, +0)
                cases.extend_from_slice(&[
                    $f::NEG_INFINITY,
                    -1e15, -1.001, -1.0, -0.999, -1e-15, -subnormal,
                    -0.0, 0.0,
                    subnormal, 1e-15, 0.999, 1.0, 1.001, 1e15,
                    $f::INFINITY
                ]);
                // +sNaN
                if include_snan {
                    cases.extend_from_slice(&[snan1, snan2, snanlarge]);
                }
                // +qNaN
                cases.extend_from_slice(&[qnan0, qnan1, qnanlarge]);

                for (ix, &x) in cases.iter().enumerate() {
                    for (iy, &y) in cases.iter().enumerate() {
                        let computed = x.total_cmp(&y);
                        let expected = ix.cmp(&iy);
                        assert_eq!(
                            computed, expected,
                            "{:e} ({}, {:?}) cmp {:e} ({}, {:?}), got: {:?}, expected: {:?}",
                            x, ix, x.decompose(),
                            y, iy, y.decompose(),
                            computed, expected);
                    }
                }
            }
        }
    }
}

mk_impl!(f32, u32, i32, i16, u8, u32, 8, 23);
mk_impl!(f64, u64, i64, i16, u16, u64, 11, 52);