1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// lib.rs
// Copyright 2016 Alexander Altman
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![allow(unknown_lints)]
use std::marker::PhantomData;
use std::{fmt, hash};

#[macro_use]
pub mod lift;

pub mod elim_helpers {
  #[derive(Debug,Clone,Copy,Default,Hash)]
  pub struct MLReflCase;

  impl<C: ?Sized> super::lift::TyFun<C> for MLReflCase {
    type Result = super::lift::TyTriple<C, C, super::Refl<C>>;
  }
}

/// An identity type; that is, the type bound of “equality witnesses.”
pub trait Identity<A: ?Sized, B: ?Sized>: Sized {
  type Inverse: Identity<B, A, Inverse = Self>;

  fn conv(&self, x: A) -> B where A: Sized, B: Sized;

  fn conv_ref<'a>(&self, x: &'a A) -> &'a B;

  fn conv_mut<'a>(&self, x: &'a mut A) -> &'a mut B;

  fn conv_box(&self, x: Box<A>) -> Box<B>;

  /// Leibniz's identity rule, approximately.
  fn conv_under<TF: lift::TyFun<A> + lift::TyFun<B>>(&self, x: <TF as lift::TyFun<A>>::Result) -> <TF as lift::TyFun<B>>::Result
    where <TF as lift::TyFun<A>>::Result: Sized, <TF as lift::TyFun<B>>::Result: Sized;

  fn inv(&self) -> &Self::Inverse;

  /// Paulin-Mohring's J rule, approximately.
  fn elim<Prop: lift::TysFun<lift::TyPair<A, Refl<A>>> + lift::TysFun<lift::TyPair<B, Self>>>
    (&self,
     refl_case: <Prop as lift::TysFun<lift::TyPair<A, Refl<A>>>>::Result)
     -> <Prop as lift::TysFun<lift::TyPair<B, Self>>>::Result
    where <Prop as lift::TysFun<lift::TyPair<A, Refl<A>>>>::Result: Sized, <Prop as lift::TysFun<lift::TyPair<B, Self>>>::Result: Sized;

  /// Martin-Löf's J rule, approximately.
  fn elim_alt<Prop: lift::TysFun<lift::TyTriple<A, B, Self>>,
              ReflCase: lift::Forall<lift::AndThen<elim_helpers::MLReflCase, lift::Uncurry<Prop>>>>
    (&self,
     refl_case: ReflCase)
     -> <Prop as lift::TysFun<lift::TyTriple<A, B, Self>>>::Result
    where <Prop as lift::TysFun<lift::TyTriple<A, B, Self>>>::Result: Sized;
}

pub fn refl<A: ?Sized>() -> Refl<A> { Refl::default() }

pub struct Refl<A: ?Sized> {
  phantom_fn: PhantomData<fn(A) -> A>,
}

impl<A: ?Sized> fmt::Debug for Refl<A> {
  fn fmt(&self, fmtr: &mut fmt::Formatter) -> fmt::Result { fmtr.debug_struct("Refl").field("phantom_fn", &self.phantom_fn).finish() }
}

#[allow(expl_impl_clone_on_copy)]
impl<A: ?Sized> Clone for Refl<A> {
  fn clone(&self) -> Refl<A> { refl() }
}

impl<A: ?Sized> Copy for Refl<A> {}

impl<A: ?Sized> Default for Refl<A> {
  fn default() -> Refl<A> { Refl { phantom_fn: PhantomData } }
}

impl<A: ?Sized> hash::Hash for Refl<A> {
  fn hash<H: hash::Hasher>(&self, hshr: &mut H) { self.phantom_fn.hash(hshr); }
}

impl<A: ?Sized> Identity<A, A> for Refl<A> {
  type Inverse = Self;

  fn conv(&self, x: A) -> A
    where A: Sized {
    x
  }

  fn conv_ref<'a>(&self, x: &'a A) -> &'a A { x }

  fn conv_mut<'a>(&self, x: &'a mut A) -> &'a mut A { x }

  fn conv_box(&self, x: Box<A>) -> Box<A> { x }

  fn inv(&self) -> &Self { self }

  fn conv_under<TF: lift::TyFun<A>>(&self, x: TF::Result) -> TF::Result
    where TF::Result: Sized {
    x
  }

  fn elim<Prop: lift::TysFun<lift::TyPair<A, Refl<A>>>>(&self,
                                          refl_case: <Prop as lift::TysFun<lift::TyPair<A, Refl<A>>>>::Result)
                                          -> <Prop as lift::TysFun<lift::TyPair<A, Refl<A>>>>::Result
    where <Prop as lift::TysFun<lift::TyPair<A, Refl<A>>>>::Result: Sized {
    refl_case
  }

  fn elim_alt<Prop: lift::TysFun<lift::TyTriple<A, A, Refl<A>>>,
              ReflCase: lift::Forall<lift::AndThen<elim_helpers::MLReflCase, lift::Uncurry<Prop>>>>
    (&self,
     refl_case: ReflCase)
     -> <Prop as lift::TysFun<lift::TyTriple<A, A, Refl<A>>>>::Result
    where <Prop as lift::TysFun<lift::TyTriple<A, A, Refl<A>>>>::Result: Sized {
    refl_case.instance::<A>()
  }
}

pub trait Equals<Other: ?Sized> {
  type IdentityWitness: Identity<Self, Other>;

  fn identity_witness() -> Self::IdentityWitness;
}

impl<T: ?Sized> Equals<T> for T {
  type IdentityWitness = Refl<T>;

  fn identity_witness() -> Refl<T> { refl() }
}

#[cfg(test)]
mod test {
  use super::*;

  #[test]
  fn inv_conv_test() {
    fn inv_conv<A, B, Ev: Identity<A, B>>(ev: Ev, x: B) -> A { ev.inv().conv(x) }

    assert_eq!(inv_conv(Refl::default(), 0), 0)
  }
}