1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
use std::{iter, ops, slice, vec};

use super::{Block, BITS};
use BlockStore::{Stack, Heap};

/// The number of blocks that fit into the 196-bit footprint of a vector.
const SIZE: usize = 196 / BITS;

#[derive(Clone, Debug)]
pub enum BlockStore {
    Stack([Block; SIZE]),
    Heap(Vec<Block>),
}

impl BlockStore {
    pub fn new() -> Self {
        Stack([0; SIZE])
    }

    pub fn with_capacity(cap: usize) -> Self {
        if cap <= SIZE {
            Stack([0; SIZE])
        } else {
            Heap(Vec::with_capacity(cap))
        }
    }

    pub fn clear(&mut self) {
        if let Heap(ref mut vec) = *self {
            vec.clear()
        } else {
            *self = Stack([0; SIZE])
        }
    }

    pub fn capacity(&self) -> usize {
        if let Heap(ref vec) = *self {
            vec.capacity()
        } else {
            SIZE
        }
    }

    pub fn reserve(&mut self, cap: usize) {
        if SIZE < cap {
            let vec = match *self {
                Stack(ref arr) => {
                    let mut vec = Vec::with_capacity(cap);
                    vec.extend(arr);
                    vec
                }
                Heap(ref mut vec) => {
                    vec.reserve(cap);
                    return;
                }
            };
            *self = Heap(vec);
        }
    }

    pub fn shrink_to_fit(&mut self) {
        let arr = match *self {
            Stack(_) => return,
            Heap(ref mut vec) => {
                while let Some(&0) = vec.last() {
                    vec.pop();
                }
                if vec.len() <= SIZE {
                    let mut arr = [0; SIZE];
                    for i in 0..vec.len() {
                        arr[i] = vec[i];
                    }
                    arr
                } else {
                    vec.shrink_to_fit();
                    return;
                }
            }
        };
        *self = Stack(arr);
    }

    pub fn drain(&mut self, idx: usize) -> Drain {
        match *self {
            Stack(ref mut data) => {
                assert!(idx <= SIZE);
                Drain::Stack {
                    data,
                    idx: idx as u8,
                }
            }
            Heap(ref mut vec) => Drain::Heap(vec.drain(idx..)),
        }
    }

    pub fn resize(&mut self, new_len: usize) {
        let vec = match *self {
            Stack(ref mut arr) => {
                if new_len < SIZE {
                    for block in arr {
                        *block = 0;
                    }
                    return;
                } else {
                    let mut vec = Vec::with_capacity(new_len);
                    vec.extend(&*arr);
                    vec.resize(new_len, 0);
                    vec
                }
            }
            Heap(ref mut vec) => {
                vec.resize(new_len, 0);
                return;
            }
        };
        *self = Heap(vec);
    }

    pub fn iter(&self) -> Iter {
        Iter { inner: ops::Deref::deref(self).iter() }
    }

    pub fn iter_mut(&mut self) -> slice::IterMut<Block> {
        ops::DerefMut::deref_mut(self).iter_mut()
    }
}

impl Default for BlockStore {
    fn default() -> Self {
        BlockStore::new()
    }
}

impl Extend<Block> for BlockStore {
    fn extend<I>(&mut self, iter: I)
        where I: IntoIterator<Item = Block>
    {
        let iter = iter.into_iter();
        let arr = match *self {
            Stack(arr) => arr,
            Heap(ref mut vec) => return vec.extend(iter),
        };
        let mut vec = Vec::with_capacity(SIZE.saturating_add(iter.size_hint().0));
        vec.extend(&arr);
        vec.extend(iter);
        *self = Heap(vec);
    }
}

impl ops::Deref for BlockStore {
    type Target = [Block];

    fn deref(&self) -> &Self::Target {
        match *self {
            Stack(ref arr) => arr,
            Heap(ref vec) => vec,
        }
    }
}

impl ops::DerefMut for BlockStore {
    fn deref_mut(&mut self) -> &mut Self::Target {
        match *self {
            Stack(ref mut arr) => arr,
            Heap(ref mut vec) => vec,
        }
    }
}

impl<'a> iter::FromIterator<&'a Block> for BlockStore {
    fn from_iter<I>(iter: I) -> Self
        where I: IntoIterator<Item = &'a Block>
    {
        BlockStore::from_iter(iter.into_iter().cloned())
    }
}

impl iter::FromIterator<Block> for BlockStore {
    fn from_iter<I>(iter: I) -> Self
        where I: IntoIterator<Item = Block>
    {
        let mut iter = iter.into_iter();
        if iter.size_hint().0 < SIZE {
            let mut arr = [0; SIZE];
            for i in 0..SIZE {
                if let Some(block) = iter.next() {
                    arr[i] = block;
                } else {
                    return Stack(arr);
                }
            }
            if let Some(block) = iter.next() {
                let mut vec = Vec::with_capacity((SIZE + 1).saturating_add(iter.size_hint().0));
                vec.extend(&arr);
                vec.push(block);
                vec.extend(iter);
                Heap(vec)
            } else {
                Stack(arr)
            }
        } else {
            Heap(Vec::from_iter(iter))
        }
    }
}

impl<'a> IntoIterator for &'a BlockStore {
    type Item = Block;
    type IntoIter = Iter<'a>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl IntoIterator for BlockStore {
    type Item = Block;
    type IntoIter = IntoIter;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter {
            kind: match self {
                Stack(data) => IntoIterKind::Stack { data, idx: 0 },
                Heap(vec) => IntoIterKind::Heap(vec.into_iter()),
            },
        }
    }
}

#[derive(Clone, Debug)]
/// An iterator over the blocks of the underlying representation.
pub struct Iter<'a> {
    inner: slice::Iter<'a, Block>,
}

impl<'a> Iterator for Iter<'a> {
    type Item = Block;

    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().cloned()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a> ExactSizeIterator for Iter<'a> {
    fn len(&self) -> usize {
        self.inner.len()
    }
}

#[derive(Clone, Debug)]
/// A consuming iterator over the blocks of the underlying representation.
pub struct IntoIter {
    kind: IntoIterKind,
}

#[derive(Clone, Debug)]
enum IntoIterKind {
    Stack { data: [Block; SIZE], idx: u8 },
    Heap(vec::IntoIter<Block>),
}

impl Iterator for IntoIter {
    type Item = Block;

    fn next(&mut self) -> Option<Self::Item> {
        match self.kind {
            IntoIterKind::Stack {
                ref data,
                ref mut idx,
            } => {
                if *idx as usize == SIZE {
                    None
                } else {
                    let ret = data[*idx as usize];
                    *idx += 1;
                    Some(ret)
                }
            }
            IntoIterKind::Heap(ref mut vec) => vec.next(),
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        match self.kind {
            IntoIterKind::Stack { idx, .. } => (SIZE - idx as usize, Some(SIZE - idx as usize)),
            IntoIterKind::Heap(ref vec) => vec.size_hint(),
        }
    }
}

impl ExactSizeIterator for IntoIter {
    fn len(&self) -> usize {
        match self.kind {
            IntoIterKind::Stack { idx, .. } => SIZE - idx as usize,
            IntoIterKind::Heap(ref vec) => vec.len(),
        }
    }
}

#[derive(Debug)]
pub enum Drain<'a> {
    Stack {
        data: &'a mut [Block; SIZE],
        idx: u8,
    },
    Heap(vec::Drain<'a, Block>),
}

impl<'a> Iterator for Drain<'a> {
    type Item = Block;

    fn next(&mut self) -> Option<Self::Item> {
        match *self {
            Drain::Stack {
                ref mut data,
                ref mut idx,
            } => {
                if *idx as usize == SIZE {
                    None
                } else {
                    let ret = data[*idx as usize];
                    data[*idx as usize] = 0;
                    *idx += 1;
                    Some(ret)
                }
            }
            Drain::Heap(ref mut vec) => vec.next(),
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        match *self {
            Drain::Stack { idx, .. } => (SIZE - idx as usize, Some(SIZE - idx as usize)),
            Drain::Heap(ref vec) => vec.size_hint(),
        }
    }
}

impl<'a> ExactSizeIterator for Drain<'a> {
    fn len(&self) -> usize {
        match *self {
            Drain::Stack { idx, .. } => SIZE - idx as usize,
            Drain::Heap(ref vec) => vec.len(),
        }
    }
}

#[test]
fn size() {
    use std::{mem, u8};

    assert_eq!(mem::size_of::<[Block; SIZE]>(),
               mem::size_of::<Vec<Block>>());
    assert!(SIZE <= u8::MAX as usize);
}