1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
///*
///ExistenceProof takes a key and a value and a set of steps to perform on it.
///The result of peforming all these steps will provide a "root hash", which can
///be compared to the value in a header.
///
///Since it is computationally infeasible to produce a hash collission for any of the used
///cryptographic hash functions, if someone can provide a series of operations to transform
///a given key and value into a root hash that matches some trusted root, these key and values
///must be in the referenced merkle tree.
///
///The only possible issue is maliablity in LeafOp, such as providing extra prefix data,
///which should be controlled by a spec. Eg. with lengthOp as NONE,
///prefix = FOO, key = BAR, value = CHOICE
///and
///prefix = F, key = OOBAR, value = CHOICE
///would produce the same value.
///
///With LengthOp this is tricker but not impossible. Which is why the "leafPrefixEqual" field
///in the ProofSpec is valuable to prevent this mutability. And why all trees should
///length-prefix the data before hashing it.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExistenceProof {
    #[prost(bytes, tag = "1")]
    pub key: std::vec::Vec<u8>,
    #[prost(bytes, tag = "2")]
    pub value: std::vec::Vec<u8>,
    #[prost(message, optional, tag = "3")]
    pub leaf: ::std::option::Option<LeafOp>,
    #[prost(message, repeated, tag = "4")]
    pub path: ::std::vec::Vec<InnerOp>,
}
///
///NonExistenceProof takes a proof of two neighbors, one left of the desired key,
///one right of the desired key. If both proofs are valid AND they are neighbors,
///then there is no valid proof for the given key.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct NonExistenceProof {
    /// TODO: remove this as unnecessary??? we prove a range
    #[prost(bytes, tag = "1")]
    pub key: std::vec::Vec<u8>,
    #[prost(message, optional, tag = "2")]
    pub left: ::std::option::Option<ExistenceProof>,
    #[prost(message, optional, tag = "3")]
    pub right: ::std::option::Option<ExistenceProof>,
}
///
///CommitmentProof is either an ExistenceProof or a NonExistenceProof, or a Batch of such messages
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct CommitmentProof {
    #[prost(oneof = "commitment_proof::Proof", tags = "1, 2, 3, 4")]
    pub proof: ::std::option::Option<commitment_proof::Proof>,
}
pub mod commitment_proof {
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Proof {
        #[prost(message, tag = "1")]
        Exist(super::ExistenceProof),
        #[prost(message, tag = "2")]
        Nonexist(super::NonExistenceProof),
        #[prost(message, tag = "3")]
        Batch(super::BatchProof),
        #[prost(message, tag = "4")]
        Compressed(super::CompressedBatchProof),
    }
}
///*
///LeafOp represents the raw key-value data we wish to prove, and
///must be flexible to represent the internal transformation from
///the original key-value pairs into the basis hash, for many existing
///merkle trees.
///
///key and value are passed in. So that the signature of this operation is:
///leafOp(key, value) -> output
///
///To process this, first prehash the keys and values if needed (ANY means no hash in this case):
///hkey = prehashKey(key)
///hvalue = prehashValue(value)
///
///Then combine the bytes, and hash it
///output = hash(prefix || length(hkey) || hkey || length(hvalue) || hvalue)
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct LeafOp {
    #[prost(enumeration = "HashOp", tag = "1")]
    pub hash: i32,
    #[prost(enumeration = "HashOp", tag = "2")]
    pub prehash_key: i32,
    #[prost(enumeration = "HashOp", tag = "3")]
    pub prehash_value: i32,
    #[prost(enumeration = "LengthOp", tag = "4")]
    pub length: i32,
    /// prefix is a fixed bytes that may optionally be included at the beginning to differentiate
    /// a leaf node from an inner node.
    #[prost(bytes, tag = "5")]
    pub prefix: std::vec::Vec<u8>,
}
///*
///InnerOp represents a merkle-proof step that is not a leaf.
///It represents concatenating two children and hashing them to provide the next result.
///
///The result of the previous step is passed in, so the signature of this op is:
///innerOp(child) -> output
///
///The result of applying InnerOp should be:
///output = op.hash(op.prefix || child || op.suffix)
///
///where the || operator is concatenation of binary data,
///and child is the result of hashing all the tree below this step.
///
///Any special data, like prepending child with the length, or prepending the entire operation with
///some value to differentiate from leaf nodes, should be included in prefix and suffix.
///If either of prefix or suffix is empty, we just treat it as an empty string
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct InnerOp {
    #[prost(enumeration = "HashOp", tag = "1")]
    pub hash: i32,
    #[prost(bytes, tag = "2")]
    pub prefix: std::vec::Vec<u8>,
    #[prost(bytes, tag = "3")]
    pub suffix: std::vec::Vec<u8>,
}
///*
///ProofSpec defines what the expected parameters are for a given proof type.
///This can be stored in the client and used to validate any incoming proofs.
///
///verify(ProofSpec, Proof) -> Proof | Error
///
///As demonstrated in tests, if we don't fix the algorithm used to calculate the
///LeafHash for a given tree, there are many possible key-value pairs that can
///generate a given hash (by interpretting the preimage differently).
///We need this for proper security, requires client knows a priori what
///tree format server uses. But not in code, rather a configuration object.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ProofSpec {
    /// any field in the ExistenceProof must be the same as in this spec.
    /// except Prefix, which is just the first bytes of prefix (spec can be longer)
    #[prost(message, optional, tag = "1")]
    pub leaf_spec: ::std::option::Option<LeafOp>,
    #[prost(message, optional, tag = "2")]
    pub inner_spec: ::std::option::Option<InnerSpec>,
}
///
///InnerSpec contains all store-specific structure info to determine if two proofs from a
///given store are neighbors.
///
///This enables:
///
///isLeftMost(spec: InnerSpec, op: InnerOp)
///isRightMost(spec: InnerSpec, op: InnerOp)
///isLeftNeighbor(spec: InnerSpec, left: InnerOp, right: InnerOp)
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct InnerSpec {
    /// Child order is the ordering of the children node, must count from 0
    /// iavl tree is [0, 1] (left then right)
    /// merk is [0, 2, 1] (left, right, here)
    #[prost(int32, repeated, tag = "1")]
    pub child_order: ::std::vec::Vec<i32>,
    #[prost(int32, tag = "2")]
    pub child_size: i32,
    #[prost(int32, tag = "3")]
    pub min_prefix_length: i32,
    #[prost(int32, tag = "4")]
    pub max_prefix_length: i32,
    #[prost(bytes, tag = "5")]
    pub empty_child: std::vec::Vec<u8>,
}
///
///BatchProof is a group of multiple proof types than can be compressed
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BatchProof {
    #[prost(message, repeated, tag = "1")]
    pub entries: ::std::vec::Vec<BatchEntry>,
}
/// Use BatchEntry not CommitmentProof, to avoid recursion
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BatchEntry {
    #[prost(oneof = "batch_entry::Proof", tags = "1, 2")]
    pub proof: ::std::option::Option<batch_entry::Proof>,
}
pub mod batch_entry {
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Proof {
        #[prost(message, tag = "1")]
        Exist(super::ExistenceProof),
        #[prost(message, tag = "2")]
        Nonexist(super::NonExistenceProof),
    }
}
//***** all items here are compressed forms ******

#[derive(Clone, PartialEq, ::prost::Message)]
pub struct CompressedBatchProof {
    #[prost(message, repeated, tag = "1")]
    pub entries: ::std::vec::Vec<CompressedBatchEntry>,
    #[prost(message, repeated, tag = "2")]
    pub lookup_inners: ::std::vec::Vec<InnerOp>,
}
/// Use BatchEntry not CommitmentProof, to avoid recursion
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct CompressedBatchEntry {
    #[prost(oneof = "compressed_batch_entry::Proof", tags = "1, 2")]
    pub proof: ::std::option::Option<compressed_batch_entry::Proof>,
}
pub mod compressed_batch_entry {
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Proof {
        #[prost(message, tag = "1")]
        Exist(super::CompressedExistenceProof),
        #[prost(message, tag = "2")]
        Nonexist(super::CompressedNonExistenceProof),
    }
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct CompressedExistenceProof {
    #[prost(bytes, tag = "1")]
    pub key: std::vec::Vec<u8>,
    #[prost(bytes, tag = "2")]
    pub value: std::vec::Vec<u8>,
    #[prost(message, optional, tag = "3")]
    pub leaf: ::std::option::Option<LeafOp>,
    /// these are indexes into the lookup_inners table in CompressedBatchProof
    #[prost(int32, repeated, tag = "4")]
    pub path: ::std::vec::Vec<i32>,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct CompressedNonExistenceProof {
    /// TODO: remove this as unnecessary??? we prove a range
    #[prost(bytes, tag = "1")]
    pub key: std::vec::Vec<u8>,
    #[prost(message, optional, tag = "2")]
    pub left: ::std::option::Option<CompressedExistenceProof>,
    #[prost(message, optional, tag = "3")]
    pub right: ::std::option::Option<CompressedExistenceProof>,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
#[repr(i32)]
pub enum HashOp {
    /// NO_HASH is the default if no data passed. Note this is an illegal argument some places.
    NoHash = 0,
    Sha256 = 1,
    Sha512 = 2,
    Keccak = 3,
    Ripemd160 = 4,
    /// ripemd160(sha256(x))
    Bitcoin = 5,
}
///*
///LengthOp defines how to process the key and value of the LeafOp
///to include length information. After encoding the length with the given
///algorithm, the length will be prepended to the key and value bytes.
///(Each one with it's own encoded length)
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
#[repr(i32)]
pub enum LengthOp {
    /// NO_PREFIX don't include any length info
    NoPrefix = 0,
    /// VAR_PROTO uses protobuf (and go-amino) varint encoding of the length
    VarProto = 1,
    /// VAR_RLP uses rlp int encoding of the length
    VarRlp = 2,
    /// FIXED32_BIG uses big-endian encoding of the length as a 32 bit integer
    Fixed32Big = 3,
    /// FIXED32_LITTLE uses little-endian encoding of the length as a 32 bit integer
    Fixed32Little = 4,
    /// FIXED64_BIG uses big-endian encoding of the length as a 64 bit integer
    Fixed64Big = 5,
    /// FIXED64_LITTLE uses little-endian encoding of the length as a 64 bit integer
    Fixed64Little = 6,
    /// REQUIRE_32_BYTES is like NONE, but will fail if the input is not exactly 32 bytes (sha256 output)
    Require32Bytes = 7,
    /// REQUIRE_64_BYTES is like NONE, but will fail if the input is not exactly 64 bytes (sha512 output)
    Require64Bytes = 8,
}