1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
// SPDX-License-Identifier: MIT
// Copyright (C) 2018-present iced project and contributors

mod block;
mod enums;
mod instr;
#[cfg(test)]
mod tests;

use crate::block_enc::block::*;
pub use crate::block_enc::enums::*;
use crate::block_enc::instr::*;
use crate::iced_constants::IcedConstants;
use crate::iced_error::IcedError;
use crate::*;
use alloc::boxed::Box;
use alloc::rc::Rc;
use alloc::vec::Vec;

/// Relocation info
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub struct RelocInfo {
	/// Address
	pub address: u64,

	/// Relocation kind
	pub kind: RelocKind,
}

impl RelocInfo {
	/// Constructor
	///
	/// # Arguments
	///
	/// * `kind`: Relocation kind
	/// * `address`: Address
	#[must_use]
	#[inline]
	pub const fn new(kind: RelocKind, address: u64) -> Self {
		Self { address, kind }
	}
}

/// Contains a slice of instructions that should be encoded by [`BlockEncoder`]
///
/// [`BlockEncoder`]: struct.BlockEncoder.html
#[derive(Debug)]
pub struct InstructionBlock<'a> {
	instructions: &'a [Instruction],
	rip: u64,
}

impl<'a> InstructionBlock<'a> {
	/// Constructor
	///
	/// # Arguments
	///
	/// * `instructions`: All instructions
	/// * `rip`: Base IP of all encoded instructions
	#[must_use]
	#[inline]
	pub const fn new(instructions: &'a [Instruction], rip: u64) -> Self {
		Self { instructions, rip }
	}
}

/// [`BlockEncoder`] result if it was successful
///
/// [`BlockEncoder`]: struct.BlockEncoder.html
#[derive(Debug)]
pub struct BlockEncoderResult {
	/// Base IP of all encoded instructions
	pub rip: u64,

	/// The bytes of all encoded instructions
	pub code_buffer: Vec<u8>,

	/// If [`BlockEncoderOptions::RETURN_RELOC_INFOS`] option was enabled:
	///
	/// All [`RelocInfo`]s.
	///
	/// [`BlockEncoderOptions::RETURN_RELOC_INFOS`]: struct.BlockEncoderOptions.html#associatedconstant.RETURN_RELOC_INFOS
	/// [`RelocInfo`]: struct.RelocInfo.html
	pub reloc_infos: Vec<RelocInfo>,

	/// If [`BlockEncoderOptions::RETURN_NEW_INSTRUCTION_OFFSETS`] option was enabled:
	///
	/// Offsets of the instructions relative to the base IP. If the instruction was rewritten to a new instruction
	/// (eg. `JE TARGET_TOO_FAR_AWAY` -> `JNE SHORT SKIP ; JMP QWORD PTR [MEM]`), the value `u32::MAX` is stored in that element.
	///
	/// [`BlockEncoderOptions::RETURN_NEW_INSTRUCTION_OFFSETS`]: struct.BlockEncoderOptions.html#associatedconstant.RETURN_NEW_INSTRUCTION_OFFSETS
	pub new_instruction_offsets: Vec<u32>,

	/// If [`BlockEncoderOptions::RETURN_CONSTANT_OFFSETS`] option was enabled:
	///
	/// Offsets of all constants in the new encoded instructions. If the instruction was rewritten,
	/// the `default()` value is stored in the corresponding element.
	///
	/// [`BlockEncoderOptions::RETURN_CONSTANT_OFFSETS`]: struct.BlockEncoderOptions.html#associatedconstant.RETURN_CONSTANT_OFFSETS
	pub constant_offsets: Vec<ConstantOffsets>,
}

/// Encodes instructions. It can be used to move instructions from one location to another location.
#[allow(missing_debug_implementations)]
pub struct BlockEncoder {
	// The usizes are the same as block.instr_indexes, but inlined here for a small perf increase.
	blocks: Vec<(Block, usize, usize)>,
	all_instrs: Vec<(InstrBase, Box<dyn Instr>)>,
	all_ips: Vec<u64>,
	benc: BlockEncInt,
}

struct BlockEncInt {
	bitness: u32,
	options: u32, // BlockEncoderOptions
	null_encoder: Encoder,
	to_instr_index: Vec<(u64, usize)>,
	has_multiple_zero_ip_instrs: bool,
}

impl BlockEncInt {
	const fn bitness(&self) -> u32 {
		self.bitness
	}

	const fn fix_branches(&self) -> bool {
		(self.options & BlockEncoderOptions::DONT_FIX_BRANCHES) == 0
	}

	fn get_target(&self, base: &InstrBase, address: u64) -> TargetInstr {
		if (address != 0 || !self.has_multiple_zero_ip_instrs) && base.orig_ip == address {
			TargetInstr::new_owner()
		} else {
			match self.to_instr_index.binary_search_by(|(ip, _)| address.cmp(ip)) {
				Ok(index) => TargetInstr::new_instr(self.to_instr_index[index].1),
				Err(_) => TargetInstr::new_address(address),
			}
		}
	}

	fn get_instruction_size(&mut self, instruction: &Instruction, ip: u64) -> u32 {
		self.null_encoder.clear_buffer();
		self.null_encoder.encode(instruction, ip).map_or_else(|_| IcedConstants::MAX_INSTRUCTION_LENGTH as u32, |len| len as u32)
	}
}

impl BlockEncoder {
	fn new(bitness: u32, instr_blocks: &[InstructionBlock<'_>], options: u32) -> Result<Self, IcedError> {
		if bitness != 16 && bitness != 32 && bitness != 64 {
			return Err(IcedError::new("Invalid bitness"));
		}
		let total_instr_len = instr_blocks.iter().map(|b| b.instructions.len()).sum();
		let mut this = Self {
			blocks: Vec::with_capacity(instr_blocks.len()),
			all_instrs: Vec::with_capacity(total_instr_len),
			all_ips: Vec::with_capacity(total_instr_len),
			benc: BlockEncInt {
				bitness,
				options,
				null_encoder: Encoder::try_new(bitness)?,
				to_instr_index: Vec::new(),
				has_multiple_zero_ip_instrs: false,
			},
		};

		let mut instr_count = 0;
		for instr_block in instr_blocks {
			let instructions = instr_block.instructions;
			instr_count += instructions.len();
			let mut ip = instr_block.rip;
			let start_index = this.all_instrs.len();
			for instruction in instructions {
				let mut base = InstrBase { orig_ip: instruction.ip(), size: 0, done: false };
				let instr = InstrUtils::create(&mut this.benc, &mut base, instruction);
				debug_assert!(base.size != 0 || instruction.code() == Code::Zero_bytes);
				ip = ip.wrapping_add(base.size as u64);
				this.all_ips.push(ip);
				this.all_instrs.push((base, instr));
			}
			let end_index = this.all_instrs.len();
			let block = Block::new(
				this.benc.bitness,
				instr_block.rip,
				if (options & BlockEncoderOptions::RETURN_RELOC_INFOS) != 0 { Some(Vec::new()) } else { None },
				start_index,
				end_index,
			)?;
			this.blocks.push((block, start_index, end_index));
		}
		// Optimize from low to high addresses
		this.blocks.sort_unstable_by(|a, b| a.0.rip.cmp(&b.0.rip));

		this.benc.to_instr_index = Vec::with_capacity(instr_count);
		// There must not be any instructions with the same IP, except if IP = 0 (default value)
		let mut num_ip_0 = 0;
		for info in &this.blocks {
			// Reverse here since we'll sort them in reverse order, see below
			for (i, (base, _)) in this.all_instrs[info.1..info.2].iter().enumerate().rev() {
				let orig_ip = base.orig_ip;
				let insert = if orig_ip == 0 {
					num_ip_0 += 1;
					num_ip_0 == 1
				} else {
					true
				};
				if insert {
					this.benc.to_instr_index.push((orig_ip, info.1 + i));
				}
			}
		}
		// We sort them in reverse order so that if we must remove the 'ip==0' entry, we just need to pop()
		this.benc.to_instr_index.sort_unstable_by(|a, b| b.0.cmp(&a.0));
		if num_ip_0 > 1 {
			this.benc.has_multiple_zero_ip_instrs = true;
			if let Some(kv) = this.benc.to_instr_index.last() {
				debug_assert_eq!(kv.0, 0);
				if kv.0 == 0 {
					let _ = this.benc.to_instr_index.pop();
				}
			}
		}
		let mut prev_ip = this.benc.to_instr_index.first().map(|(ip, _)| *ip).unwrap_or_default();
		for (ip, _) in this.benc.to_instr_index.iter().skip(1) {
			if *ip == prev_ip {
				return Err(IcedError::with_string(format!("Multiple instructions with the same IP: 0x{:X}", ip)));
			}
			prev_ip = *ip;
		}

		for info in &mut this.blocks {
			let mut ip = info.0.rip;
			for (i, (base, instr)) in this.all_instrs[info.1..info.2].iter_mut().enumerate() {
				this.all_ips[info.1 + i] = ip;
				if !base.done {
					let (target_instr, target_ip) = instr.get_target_instr();
					*target_instr = this.benc.get_target(base, target_ip);
				}
				ip = ip.wrapping_add(base.size as u64);
			}
		}

		Ok(this)
	}

	/// Encodes instructions. Any number of branches can be part of this block.
	/// You can use this function to move instructions from one location to another location.
	/// If the target of a branch is too far away, it'll be rewritten to a longer branch.
	/// You can disable this by passing in [`BlockEncoderOptions::DONT_FIX_BRANCHES`].
	/// If the block has any `RIP`-relative memory operands, make sure the data isn't too
	/// far away from the new location of the encoded instructions. Every OS should have
	/// some API to allocate memory close (+/-2GB) to the original code location.
	///
	/// # Errors
	///
	/// Returns an error if it failed to encode one or more instructions.
	///
	/// # Arguments
	///
	/// * `bitness`: 16, 32, or 64
	/// * `block`: All instructions
	/// * `options`: Encoder options, see [`BlockEncoderOptions`]
	///
	/// # Examples
	///
	/// ```
	/// use iced_x86::*;
	///
	/// // je short $-2
	/// // add dh,cl
	/// // sbb r9d,ebx
	/// let bytes = b"\x75\xFC\x00\xCE\x41\x19\xD9";
	/// let decoder = Decoder::with_ip(64, bytes, 0x1234_5678_9ABC_DEF0, DecoderOptions::NONE);
	/// let instructions: Vec<_> = decoder.into_iter().collect();
	///
	/// // orig_rip + 8
	/// let block = InstructionBlock::new(&instructions, 0x1234_5678_9ABC_DEF8);
	/// let bytes = match BlockEncoder::encode(64, block, BlockEncoderOptions::NONE) {
	///     Err(err) => panic!("Failed: {}", err),
	///     Ok(result) => result.code_buffer,
	/// };
	/// assert_eq!(bytes, vec![0x75, 0xF4, 0x00, 0xCE, 0x41, 0x19, 0xD9]);
	/// ```
	///
	/// [`BlockEncoderOptions`]: struct.BlockEncoderOptions.html
	/// [`BlockEncoderOptions::DONT_FIX_BRANCHES`]: struct.BlockEncoderOptions.html#associatedconstant.DONT_FIX_BRANCHES
	#[inline]
	pub fn encode(bitness: u32, block: InstructionBlock<'_>, options: u32) -> Result<BlockEncoderResult, IcedError> {
		match Self::encode_slice(bitness, &[block], options) {
			Ok(ref mut result_vec) => {
				debug_assert_eq!(result_vec.len(), 1);
				Ok(result_vec.remove(0))
			}
			Err(err) => Err(err),
		}
	}

	/// Encodes instructions. Any number of branches can be part of this block.
	/// You can use this function to move instructions from one location to another location.
	/// If the target of a branch is too far away, it'll be rewritten to a longer branch.
	/// You can disable this by passing in [`BlockEncoderOptions::DONT_FIX_BRANCHES`].
	/// If the block has any `RIP`-relative memory operands, make sure the data isn't too
	/// far away from the new location of the encoded instructions. Every OS should have
	/// some API to allocate memory close (+/-2GB) to the original code location.
	///
	/// # Errors
	///
	/// Returns an error if it failed to encode one or more instructions.
	///
	/// # Arguments
	///
	/// * `bitness`: 16, 32, or 64
	/// * `blocks`: All instructions
	/// * `options`: Encoder options, see [`BlockEncoderOptions`]
	///
	/// # Examples
	///
	/// ```
	/// use iced_x86::*;
	///
	/// // je short $-2
	/// // add dh,cl
	/// // sbb r9d,ebx
	/// let bytes = b"\x75\xFC\x00\xCE\x41\x19\xD9";
	/// let decoder = Decoder::with_ip(64, bytes, 0x1234_5678_9ABC_DEF0, DecoderOptions::NONE);
	/// let instructions1: Vec<_> = decoder.into_iter().collect();
	///
	/// // je short $
	/// let bytes = b"\x75\xFE";
	/// let decoder = Decoder::with_ip(64, bytes, 0x1234_5678, DecoderOptions::NONE);
	/// let instructions2: Vec<_> = decoder.into_iter().collect();
	///
	/// // orig_rip + 8
	/// let block1 = InstructionBlock::new(&instructions1, 0x1234_5678_9ABC_DEF8);
	/// // a new ip
	/// let block2 = InstructionBlock::new(&instructions2, 0x8000_4000_2000_1000);
	/// let bytes = match BlockEncoder::encode_slice(64, &[block1, block2], BlockEncoderOptions::NONE) {
	///     Err(err) => panic!("Failed: {}", err),
	///     Ok(result) => result,
	/// };
	/// assert_eq!(bytes.len(), 2);
	/// assert_eq!(bytes[0].code_buffer, vec![0x75, 0xF4, 0x00, 0xCE, 0x41, 0x19, 0xD9]);
	/// assert_eq!(bytes[1].code_buffer, vec![0x75, 0xFE]);
	/// ```
	///
	/// [`BlockEncoderOptions`]: struct.BlockEncoderOptions.html
	/// [`BlockEncoderOptions::DONT_FIX_BRANCHES`]: struct.BlockEncoderOptions.html#associatedconstant.DONT_FIX_BRANCHES
	#[inline]
	pub fn encode_slice(bitness: u32, blocks: &[InstructionBlock<'_>], options: u32) -> Result<Vec<BlockEncoderResult>, IcedError> {
		Self::new(bitness, blocks, options)?.encode2()
	}

	fn encode2(&mut self) -> Result<Vec<BlockEncoderResult>, IcedError> {
		// 5 iters is enough even if millions of instructions are encoded. < 10 instructions are optimized per loop
		// iteration after only a few loop iters. It's not worth optimizing the remaining few instructions.
		for _ in 0..5 {
			let mut updated = false;
			for info in &mut self.blocks {
				let mut gained = 0;
				let block_rip = info.0.rip;
				let mut ctx = InstrContext { block: &mut info.0, all_ips: &mut self.all_ips, ip: block_rip };
				for (i, (base, instr)) in self.all_instrs[info.1..info.2].iter_mut().enumerate() {
					ctx.all_ips[info.1 + i] = ctx.ip;
					// If it can't be optimized further, don't call its virtual optimize() fn for a nice speedup
					if !base.done {
						let old_size = base.size;
						if instr.optimize(base, &mut ctx, gained) {
							let instr_size = base.size;
							if instr_size > old_size {
								return Err(IcedError::new("Internal error"));
							}
							if instr_size < old_size {
								gained += (old_size - instr_size) as u64;
								updated = true;
							}
						} else if base.size != old_size {
							return Err(IcedError::new("Internal error"));
						}
					}
					ctx.ip = ctx.ip.wrapping_add(base.size as u64);
				}
			}
			if !updated {
				break;
			}
		}

		for info in &mut self.blocks {
			let index = info.2.wrapping_sub(1);
			if let Some((last_base, _)) = self.all_instrs.get(index) {
				let last_ip = self.all_ips[index];
				let after_addr = last_ip.wrapping_add(last_base.size as u64);
				info.0.initialize_data(after_addr);
			} else {
				debug_assert_eq!(info.2, 0);
			}
		}

		let mut result_vec: Vec<BlockEncoderResult> = Vec::with_capacity(self.blocks.len());
		for info in &mut self.blocks {
			let instr_count = info.2 - info.1;
			let mut new_instruction_offsets: Vec<u32> = if (self.benc.options & BlockEncoderOptions::RETURN_NEW_INSTRUCTION_OFFSETS) != 0 {
				Vec::with_capacity(instr_count)
			} else {
				Vec::new()
			};
			let mut constant_offsets: Vec<ConstantOffsets> =
				if (self.benc.options & BlockEncoderOptions::RETURN_CONSTANT_OFFSETS) != 0 { Vec::with_capacity(instr_count) } else { Vec::new() };
			let block_rip = info.0.rip;
			let mut ctx = InstrContext { block: &mut info.0, all_ips: &mut self.all_ips, ip: block_rip };
			for (base, instr) in &mut self.all_instrs[info.1..info.2] {
				let buffer_pos = ctx.block.buffer_pos();
				let is_original_instruction = if (self.benc.options & BlockEncoderOptions::RETURN_CONSTANT_OFFSETS) != 0 {
					let result = instr.encode(base, &mut ctx)?;
					constant_offsets.push(result.0);
					result.1
				} else {
					instr.encode(base, &mut ctx)?.1
				};
				let size = ctx.block.buffer_pos() - buffer_pos;
				if size != base.size as usize {
					return Err(IcedError::new("Internal error"));
				}
				if (self.benc.options & BlockEncoderOptions::RETURN_NEW_INSTRUCTION_OFFSETS) != 0 {
					new_instruction_offsets.push(if is_original_instruction { ctx.ip.wrapping_sub(ctx.block.rip) as u32 } else { u32::MAX });
				}
				ctx.ip = ctx.ip.wrapping_add(size as u64);
			}
			info.0.write_data()?;
			result_vec.push(BlockEncoderResult {
				rip: info.0.rip,
				code_buffer: info.0.take_buffer(),
				reloc_infos: info.0.take_reloc_infos(),
				new_instruction_offsets,
				constant_offsets,
			});
			info.0.dispose();
		}

		Ok(result_vec)
	}
}