1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
use crossbeam_channel::{unbounded, Receiver, Sender};
use crossbeam_utils::thread;
use std::collections::HashMap;
use std::io::prelude::*;
use std::io::ErrorKind;
use std::net::{Shutdown, TcpStream};
use std::time::Duration;

#[macro_use]
extern crate maplit;

pub mod packets;
mod util;
use util::q;

/// Messages the client needs to format/display to the user.
/// First field is always the packet type (`T_*`), followed
/// by a type-specific order.
pub type Icbmsg = Vec<String>;

/// Session parameters provided by client upon initialization.
#[derive(Debug)]
pub struct Config {
    pub serverip: String,
    pub nickname: String,
    pub port: u16,
    pub group: String,
}

/// Commands a `Client` can send to the `Server` through the `cmd` channels.
#[derive(Debug, PartialEq)]
pub enum Command {
    /// Terminate the connection to the remote server. ICB doesn't have a way to
    /// perform a clean disconnect other than shutting down the socket.
    Bye,
    /// Send a message to the group.
    Open(String),
    /// Send a personal message to a user.
    /// First parameter is the username, second is the message text.
    Personal(String, String),
    /// Beep another user.
    Beep(String),
    /// Change nickname.
    Name(String),
}

/// Representation of the client/user state.
#[derive(Debug)]
pub struct Client {
    pub nickname: String,
    pub cmd_s: Sender<Command>,
    pub msg_r: Receiver<Icbmsg>,
}

/// Representation of the connection to the remote server.
#[derive(Debug)]
pub struct Server {
    hostname: String,
    port: u16,
    sock: Option<TcpStream>,
    cmd_r: Receiver<Command>,
    msg_s: Sender<Icbmsg>,
    nickname: String,
    group: String,
}

impl Server {
    fn new(
        hostname: &str,
        port: u16,
        nickname: &str,
        cmd_r: Receiver<Command>,
        msg_s: Sender<Icbmsg>,
        group: &str,
    ) -> Server {
        Server {
            hostname: hostname.to_string(),
            port,
            cmd_r,
            msg_s,
            nickname: nickname.to_string(),
            sock: None,
            group: group.to_string(),
        }
    }

    /// Read a buffer's worth of data from the TcpStream and dispatch it to the
    /// correct parser.
    /// If the caller expects a packet of certain type it is provided through `expected`.
    fn read(&mut self, expected: Option<char>) -> Result<HashMap<&str, String>, std::io::Error> {
        // Allocate a buffer large enough to hold two fully sized maximum ICB packets.
        let mut buffer = [0; 512];

        // Peek at the incoming data; some packets may show up as a single large buffer
        // so we need to look at the size of the packet of the data we received.
        // Then call read_exact() to read that many bytes, parse that data and send it
        // up the stack.
        // We know we won't be reading at the middle of an ICB packet because they are
        // at most 255 bytes in size, our buffer is double that, and we will always start
        // the connection with a valid packet. Therefore a full ICB packet will always
        // fit the buffer wherever it's located.
        let nbytes = self.sock.as_ref().unwrap().peek(&mut buffer)?;
        if nbytes == 0 {
            // Nothing to peek at.
            return Ok(hashmap! {"type" => packets::T_INVALID.to_string()});
        }

        // Look for the beginning of the ICB packet. This is the first non-zero byte in the buffer.
        let mut packet_len = 0;
        for (i, byte) in buffer.iter().enumerate() {
            // Skip over empty bytes; the first byte we encounter is the packet size.
            if *byte != 0 {
                q("Non-zero byte found with position and value", &(i, byte))?;
                packet_len = *byte as usize;
                break;
            }
        }

        // XXX: We need to handle packets of 255 bytes too.
        if packet_len == 0 {
            // Still nothing worthwhile found -- bail out.
            return Ok(hashmap! {"type" => packets::T_INVALID.to_string()});
        }

        // Allocate a new message vector the size of the packet plus the leading size byte
        // (which gets stripped later).
        let mut message = vec![0; packet_len + 1];

        // Now read as much data from the socket as the server has indicated it has sent.
        self.sock.as_ref().unwrap().read_exact(&mut message)?;

        // Remove the packet size which is stored as packet_len already.
        message.remove(0);

        q("received message", &message)?;

        let packet_type_byte = message[0] as char;

        match expected {
            Some(t) if (packet_type_byte == t) => {
                // Caller was expecting a particular type, let's see if we have that.
                q("OK! Received packet of expected type", &t)?;
            }
            Some(t) => {
                q(
                    "FAIL! Mismatch between expectation and result",
                    &(t, packet_type_byte),
                )?;
                return Err(std::io::Error::new(
                    ErrorKind::NotFound,
                    "Packet type not found",
                ));
            }
            _ => {
                q("OK! Nothing was expected, just carry on", &())?;
            }
        }

        q("Looking for a packet of type", &packet_type_byte)?;
        for packet in &packets::PACKETS {
            if packet.packet_type == packet_type_byte {
                let data = (packet.parse)(message, packet_len);
                q("data", &data)?;

                return Ok(data);
            }
        }

        Err(std::io::Error::new(
            ErrorKind::InvalidData,
            format!(
                "Invalid data received from peer of type {}",
                packet_type_byte
            ),
        ))
    }

    /// This is the "main event loop" of the library which starts by setting up the socket as
    /// non-blocking before entering a loop where it looks for incoming commands on `msg_r`
    /// which need to be dealt with. Secondly it looks for any ICB traffic that was received.
    pub fn run(&mut self) {
        // Up to this point blocking reads from the network were fine, now we're going to require
        // non-blocking reads.
        self.sock
            .as_ref()
            .unwrap()
            .set_nonblocking(true)
            .expect("set_nonblocking on socket failed");

        // XXX: thread::scope() really needed here?
        thread::scope(|s| {
            s.spawn(|_| loop {
                // Handle incoming commands sent by the client.
                if let Ok(m) = self.cmd_r.try_recv() {
                    match m {
                        Command::Bye => {
                            q("Terminating connection to remote host", &()).unwrap();
                            self.sock
                                .as_ref()
                                .unwrap()
                                .shutdown(Shutdown::Both)
                                .unwrap();
                            // XXX: Inform client the connection was closed
                            break;
                        }
                        Command::Open(msg) => {
                            q("Sending message to channel", &msg).unwrap();
                            let packet = (packets::OPEN.create)(vec![msg.as_str()]);
                            self.sock
                                .as_ref()
                                .unwrap()
                                .write_all(&packet)
                                .unwrap();
                        }
                        Command::Personal(recipient, msg) => {
                            let packet = (packets::COMMAND.create)(vec![
                                packets::CMD_MSG,
                                format!("{} {}", recipient, msg).as_str(),
                            ]);
                            self.sock
                                .as_ref()
                                .unwrap()
                                .write_all(&packet)
                                .unwrap();
                        }
                        Command::Beep(recipient) => {
                            let packet = (packets::COMMAND.create)(vec![
                                packets::CMD_BEEP,
                                recipient.as_str(),
                            ]);
                            self.sock
                                .as_ref()
                                .unwrap()
                                .write_all(&packet)
                                .unwrap();
                        }
                        Command::Name(newname) => {
                            let packet = (packets::COMMAND.create)(vec![
                                packets::CMD_NAME,
                                newname.as_str(),
                            ]);
                            self.sock
                                .as_ref()
                                .unwrap()
                                .write_all(&packet)
                                .unwrap();
                            self.nickname = newname;
                        }
                    }
                }

                // Handle incoming ICB packets, based on the type we'll determine
                // how to handle them.
                // For example T_OPEN and T_PERSONAL will be sent to the client.
                if let Ok(v) = self.read(None) {
                    if [packets::T_OPEN, packets::T_PERSONAL]
                        .contains(&v["type"].chars().next().unwrap())
                    {
                        // Use an indirection to prevent mutably borrowing self.msg_s
                        let msg = vec![
                            v["type"].clone(),
                            v["nickname"].clone(),
                            v["message"].clone(),
                        ];
                        self.msg_s.send(msg).unwrap();
                    } else if v["type"].chars().next().unwrap() == packets::T_STATUS {
                        let msg = vec![
                            v["type"].clone(),
                            v["category"].clone(),
                            v["message"].clone(),
                        ];
                        self.msg_s.send(msg).unwrap();
                    } else if v["type"].chars().next().unwrap() == packets::T_BEEP {
                        let msg = vec![v["type"].clone(), v["nickname"].clone()];
                        self.msg_s.send(msg).unwrap();
                    }
                }

                std::thread::sleep(Duration::from_millis(1));
            });
        })
        .unwrap();
    }

    // Send a login packet with the 'login' command and a default group of '1'.
    // Any other commands are currently not understood by the server implementation.
    // Upon sending the login packet we expect an empty login response.
    // At this point the client and server can start exchanging other types of packets.
    fn login(&mut self) -> std::io::Result<()> {
        let login_packet = (packets::LOGIN.create)(vec![
            self.nickname.as_str(),
            self.nickname.as_str(),
            self.group.as_str(),
            "login",
        ]);

        self.sock
            .as_ref()
            .unwrap()
            .write_all(&login_packet)?;

        if self.read(Some(packets::T_LOGIN)).is_err() {
            panic!("Login failed.");
        }

        Ok(())
    }

    pub fn connect(&mut self) -> std::io::Result<()> {
        // TcpStream::connect() returns a Result<TcpStream>; this we can
        // handle with Ok() and Err(). self.sock is defined as an Option<TcpStream>,
        // so we need to wrap the outcome of Ok() with Some() to convert it
        // from a Result<> to an Option<>.
        match TcpStream::connect(format!("{}:{}", &self.hostname, &self.port)) {
            Ok(t) => self.sock = Some(t),
            Err(e) => panic!(
                "Could not connect to {}:{} - {}",
                &self.hostname, &self.port, e
            ),
        }

        // At this point we expect a protocol packet.
        if let Ok(v) = self.read(Some(packets::T_PROTOCOL)) {
            q("protocol packet data", &v)?;
            q(
                "connected to",
                &(v.get("hostid").unwrap(), v.get("clientid").unwrap()),
            )?;
            let msg = vec![
                v["type"].clone(),
                v["hostid"].clone(),
                v["clientid"].clone(),
            ];
            self.msg_s.send(msg).unwrap();
        } else {
            panic!("Expected a protocol packet, which didn't arrive.")
        }

        Ok(())
    }
}

/// Entrypoint for this module; it sets up the `Client` and `Server` structs
/// and establishes a connection to the configured server.
pub fn init(config: Config) -> Result<(Client, Server), std::io::Error> {
    let (msg_s, msg_r) = unbounded();
    let (cmd_s, cmd_r) = unbounded();

    let mut server = Server::new(
        &config.serverip,
        config.port,
        &config.nickname,
        cmd_r,
        msg_s,
        &config.group,
    );
    server.connect()?;
    server.login()?;

    let client = Client {
        nickname: config.nickname,
        cmd_s,
        msg_r,
    };

    Ok((client, server))
}