1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
//! Rust API wrapping the `ibverbs` RDMA library.
//!
//! `libibverbs` is a library that allows userspace processes to use RDMA "verbs" to perform
//! high-throughput, low-latency network operations for both Infiniband (according to the
//! Infiniband specifications) and iWarp (iWARP verbs specifications). It handles the control path
//! of creating, modifying, querying and destroying resources such as Protection Domains,
//! Completion Queues, Queue-Pairs, Shared Receive Queues, Address Handles, and Memory Regions. It
//! also handles sending and receiving data posted to QPs and SRQs, and getting completions from
//! CQs using polling and completions events.
//!
//! A good place to start is to look at the programs in [`examples/`](examples/), and the upstream
//! [C examples]. You can test RDMA programs on modern Linux kernels even without specialized RDMA
//! hardware by using [SoftRoCE][soft].
//!
//! # For the detail-oriented
//!
//! The control path is implemented through system calls to the `uverbs` kernel module, which
//! further calls the low-level HW driver. The data path is implemented through calls made to
//! low-level HW library which, in most cases, interacts directly with the HW provides kernel and
//! network stack bypass (saving context/mode switches) along with zero copy and an asynchronous
//! I/O model.
//!
//! iWARP ethernet NICs support RDMA over hardware-offloaded TCP/IP, while InfiniBand is a general
//! high-throughput, low-latency networking technology. InfiniBand host channel adapters (HCAs) and
//! iWARP NICs commonly support direct hardware access from userspace (kernel bypass), and
//! `libibverbs` supports this when available.
//!
//! For more information on RDMA verbs, see the [InfiniBand Architecture Specification][infini]
//! vol. 1, especially chapter 11, and the RDMA Consortium's [RDMA Protocol Verbs
//! Specification][RFC5040]. See also the upstream [`libibverbs/verbs.h`] file for the original C
//! definitions, as well as the manpages for the `ibv_*` methods.
//!
//! # Library dependency
//!
//! `libibverbs` is usually available as a free-standing [library package]. It [used to be][1]
//! self-contained, but has recently been adopted into [`rdma-core`]. `cargo` will automatically
//! build the necessary library files and place them in `vendor/rdma-core/build/lib`. If a
//! system-wide installation is not available, those library files can be used instead by copying
//! them to `/usr/lib`, or by adding that path to the dynamic linking search path.
//!
//! # Thread safety
//!
//! All interfaces are `Sync` and `Send` since the underlying ibverbs API [is thread safe][safe].
//!
//! # Documentation
//!
//! Much of the documentation of this crate borrows heavily from the excellent posts over at
//! [RDMAmojo]. If you are going to be working a lot with ibverbs, chances are you will want to
//! head over there. In particular, [this overview post][1] may be a good place to start.
//!
//! [`rdma-core`]: https://github.com/linux-rdma/rdma-core
//! [`libibverbs/verbs.h`]: https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/verbs.h
//! [library package]: https://launchpad.net/ubuntu/+source/libibverbs
//! [C examples]: https://github.com/linux-rdma/rdma-core/tree/master/libibverbs/examples
//! [1]: https://git.kernel.org/pub/scm/libs/infiniband/libibverbs.git/about/
//! [infini]: http://www.infinibandta.org/content/pages.php?pg=technology_public_specification
//! [RFC5040]: https://tools.ietf.org/html/rfc5040
//! [safe]: http://www.rdmamojo.com/2013/07/26/libibverbs-thread-safe-level/
//! [soft]: https://github.com/SoftRoCE/rxe-dev/wiki/rxe-dev:-Home
//! [RDMAmojo]: http://www.rdmamojo.com/
//! [1]: http://www.rdmamojo.com/2012/05/18/libibverbs/

#![deny(missing_docs)]
#![warn(rust_2018_idioms)]
// avoid warnings about RDMAmojo, iWARP, InfiniBand, etc. not being in backticks
#![allow(clippy::doc_markdown)]

use std::convert::TryInto;
use std::ffi::CStr;
use std::io;
use std::marker::PhantomData;
use std::mem;
use std::os::raw::c_void;
use std::ptr;

const PORT_NUM: u8 = 1;

/// Direct access to low-level libverbs FFI.
pub use ffi::ibv_qp_type;
pub use ffi::ibv_wc;
pub use ffi::ibv_wc_opcode;
pub use ffi::ibv_wc_status;

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

/// Access flags for use with `QueuePair` and `MemoryRegion`.
pub use ffi::ibv_access_flags;

/// Because `std::slice::SliceIndex` is still unstable, we follow @alexcrichton's suggestion in
/// https://github.com/rust-lang/rust/issues/35729 and implement it ourselves.
mod sliceindex;

/// Get list of available RDMA devices.
///
/// # Errors
///
///  - `EPERM`: Permission denied.
///  - `ENOMEM`: Insufficient memory to complete the operation.
///  - `ENOSYS`: No kernel support for RDMA.
pub fn devices() -> io::Result<DeviceList> {
    let mut n = 0i32;
    let devices = unsafe { ffi::ibv_get_device_list(&mut n as *mut _) };

    if devices.is_null() {
        return Err(io::Error::last_os_error());
    }

    let devices = unsafe {
        use std::slice;
        slice::from_raw_parts_mut(devices, n as usize)
    };
    Ok(DeviceList(devices))
}

/// List of available RDMA devices.
pub struct DeviceList(&'static mut [*mut ffi::ibv_device]);

unsafe impl Sync for DeviceList {}
unsafe impl Send for DeviceList {}

impl Drop for DeviceList {
    fn drop(&mut self) {
        unsafe { ffi::ibv_free_device_list(self.0.as_mut_ptr()) };
    }
}

impl DeviceList {
    /// Returns an iterator over all found devices.
    pub fn iter(&self) -> DeviceListIter<'_> {
        DeviceListIter { list: self, i: 0 }
    }

    /// Returns the number of devices.
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Returns `true` if there are any devices.
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Returns the device at the given `index`, or `None` if out of bounds.
    pub fn get(&self, index: usize) -> Option<Device<'_>> {
        self.0.get(index).map(|d| d.into())
    }
}

impl<'a> IntoIterator for &'a DeviceList {
    type Item = <DeviceListIter<'a> as Iterator>::Item;
    type IntoIter = DeviceListIter<'a>;
    fn into_iter(self) -> Self::IntoIter {
        DeviceListIter { list: self, i: 0 }
    }
}

/// Iterator over a `DeviceList`.
pub struct DeviceListIter<'iter> {
    list: &'iter DeviceList,
    i: usize,
}

impl<'iter> Iterator for DeviceListIter<'iter> {
    type Item = Device<'iter>;
    fn next(&mut self) -> Option<Self::Item> {
        let e = self.list.0.get(self.i);
        if e.is_some() {
            self.i += 1;
        }
        e.map(|e| e.into())
    }
}

/// An RDMA device.
pub struct Device<'devlist>(&'devlist *mut ffi::ibv_device);
unsafe impl<'devlist> Sync for Device<'devlist> {}
unsafe impl<'devlist> Send for Device<'devlist> {}

impl<'d> From<&'d *mut ffi::ibv_device> for Device<'d> {
    fn from(d: &'d *mut ffi::ibv_device) -> Self {
        Device(d)
    }
}

/// A Global unique identifier for ibv.
///
/// This struct acts as a rust wrapper for GUID value represented as `__be64` in
/// libibverbs. We introduce this struct, because u64 is stored in host
/// endianness, whereas ibverbs stores GUID in network order (big endian).
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Default, Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[repr(transparent)]
pub struct Guid {
    raw: [u8; 8],
}

impl Guid {
    /// Upper 24 bits of the GUID are OUI (Organizationally Unique Identifier,
    /// http://standards-oui.ieee.org/oui/oui.txt). The function returns OUI as
    /// a 24-bit number inside a u32.
    pub fn oui(&self) -> u32 {
        let padded = [0, self.raw[0], self.raw[1], self.raw[2]];
        u32::from_be_bytes(padded)
    }

    /// Returns `true` if this GUID is all zeroes, which is considered reserved.
    pub fn is_reserved(&self) -> bool {
        self.raw == [0; 8]
    }
}

impl From<u64> for Guid {
    fn from(guid: u64) -> Self {
        Self {
            raw: guid.to_be_bytes(),
        }
    }
}

impl From<Guid> for u64 {
    fn from(guid: Guid) -> Self {
        u64::from_be_bytes(guid.raw)
    }
}

impl AsRef<ffi::__be64> for Guid {
    fn as_ref(&self) -> &ffi::__be64 {
        unsafe { &*self.raw.as_ptr().cast::<ffi::__be64>() }
    }
}

impl<'devlist> Device<'devlist> {
    /// Opens an RMDA device and creates a context for further use.
    ///
    /// This context will later be used to query its resources or for creating resources.
    ///
    /// Unlike what the verb name suggests, it doesn't actually open the device. This device was
    /// opened by the kernel low-level driver and may be used by other user/kernel level code. This
    /// verb only opens a context to allow user level applications to use it.
    ///
    /// # Errors
    ///
    ///  - `EINVAL`: `PORT_NUM` is invalid (from `ibv_query_port_attr`).
    ///  - `ENOMEM`: Out of memory (from `ibv_query_port_attr`).
    ///  - `EMFILE`: Too many files are opened by this process (from `ibv_query_gid`).
    ///  - Other: the device is not in `ACTIVE` or `ARMED` state.
    pub fn open(&self) -> io::Result<Context> {
        Context::with_device(*self.0)
    }

    /// Returns a string of the name, which is associated with this RDMA device.
    ///
    /// This name is unique within a specific machine (the same name cannot be assigned to more
    /// than one device). However, this name isn't unique across an InfiniBand fabric (this name
    /// can be found in different machines).
    ///
    /// When there are more than one RDMA devices in a computer, changing the device location in
    /// the computer (i.e. in the PCI bus) may result a change in the names associated with the
    /// devices. In order to distinguish between the device, it is recommended using the device
    /// GUID, returned by `Device::guid`.
    ///
    /// The name is composed from:
    ///
    ///  - a *prefix* which describes the RDMA device vendor and model
    ///    - `cxgb3` - Chelsio Communications, T3 RDMA family
    ///    - `cxgb4` - Chelsio Communications, T4 RDMA family
    ///    - `ehca` - IBM, eHCA family
    ///    - `ipathverbs` - QLogic
    ///    - `mlx4` - Mellanox Technologies, ConnectX family
    ///    - `mthca` - Mellanox Technologies, InfiniHost family
    ///    - `nes` - Intel, Intel-NE family
    ///  - an *index* that helps to differentiate between several devices from the same vendor and
    ///    family in the same computer
    pub fn name(&self) -> Option<&'devlist CStr> {
        let name_ptr = unsafe { ffi::ibv_get_device_name(*self.0) };
        if name_ptr.is_null() {
            None
        } else {
            Some(unsafe { CStr::from_ptr(name_ptr) })
        }
    }

    /// Returns the Global Unique IDentifier (GUID) of this RDMA device.
    ///
    /// This GUID, that was assigned to this device by its vendor during the manufacturing, is
    /// unique and can be used as an identifier to an RDMA device.
    ///
    /// From the prefix of the RDMA device GUID, one can know who is the vendor of that device
    /// using the [IEEE OUI](http://standards.ieee.org/develop/regauth/oui/oui.txt).
    ///
    /// # Errors
    ///
    ///  - `EMFILE`: Too many files are opened by this process.
    pub fn guid(&self) -> io::Result<Guid> {
        let guid_int = unsafe { ffi::ibv_get_device_guid(*self.0) };
        let guid: Guid = guid_int.into();
        if guid.is_reserved() {
            Err(io::Error::last_os_error())
        } else {
            Ok(guid)
        }
    }

    /// Returns stable IB device index as it is assigned by the kernel
    /// # Errors
    ///
    ///  - `ENOTSUP`: Stable index is not supported
    pub fn index(&self) -> io::Result<i32> {
        let idx = unsafe { ffi::ibv_get_device_index(*self.0) };
        if idx == -1 {
            Err(io::Error::new(
                io::ErrorKind::Unsupported,
                "device index not known",
            ))
        } else {
            Ok(idx)
        }
    }
}

/// An RDMA context bound to a device.
pub struct Context {
    ctx: *mut ffi::ibv_context,
    port_attr: ffi::ibv_port_attr,
    gid: Gid,
}

unsafe impl Sync for Context {}
unsafe impl Send for Context {}

impl Context {
    /// Opens a context for the given device, and queries its port and gid.
    fn with_device(dev: *mut ffi::ibv_device) -> io::Result<Context> {
        assert!(!dev.is_null());

        let ctx = unsafe { ffi::ibv_open_device(dev) };
        if ctx.is_null() {
            return Err(io::Error::new(
                io::ErrorKind::Other,
                "failed to open device".to_string(),
            ));
        }

        // TODO: from http://www.rdmamojo.com/2012/07/21/ibv_query_port/
        //
        //   Most of the port attributes, returned by ibv_query_port(), aren't constant and may be
        //   changed, mainly by the SM (in InfiniBand), or by the Hardware. It is highly
        //   recommended avoiding saving the result of this query, or to flush them when a new SM
        //   (re)configures the subnet.
        //
        let mut port_attr = ffi::ibv_port_attr::default();
        let errno = unsafe {
            ffi::ibv_query_port(
                ctx,
                PORT_NUM,
                &mut port_attr as *mut ffi::ibv_port_attr as *mut _,
            )
        };
        if errno != 0 {
            return Err(io::Error::from_raw_os_error(errno));
        }

        // From http://www.rdmamojo.com/2012/08/02/ibv_query_gid/:
        //
        //   The content of the GID table is valid only when the port_attr.state is either
        //   IBV_PORT_ARMED or IBV_PORT_ACTIVE. For other states of the port, the value of the GID
        //   table is indeterminate.
        //
        match port_attr.state {
            ffi::ibv_port_state::IBV_PORT_ACTIVE | ffi::ibv_port_state::IBV_PORT_ARMED => {}
            _ => {
                return Err(io::Error::new(
                    io::ErrorKind::Other,
                    "port is not ACTIVE or ARMED".to_string(),
                ));
            }
        }

        // let mut gid = ffi::ibv_gid::default();
        let mut gid = Gid::default();
        let ok = unsafe { ffi::ibv_query_gid(ctx, PORT_NUM, 0, gid.as_mut()) };
        if ok != 0 {
            return Err(io::Error::last_os_error());
        }

        Ok(Context {
            ctx,
            port_attr,
            gid,
        })
    }

    /// Create a completion queue (CQ).
    ///
    /// When an outstanding Work Request, within a Send or Receive Queue, is completed, a Work
    /// Completion is being added to the CQ of that Work Queue. This Work Completion indicates that
    /// the outstanding Work Request has been completed (and no longer considered outstanding) and
    /// provides details on it (status, direction, opcode, etc.).
    ///
    /// A single CQ can be shared for sending, receiving, and sharing across multiple QPs. The Work
    /// Completion holds the information to specify the QP number and the Queue (Send or Receive)
    /// that it came from.
    ///
    /// `min_cq_entries` defines the minimum size of the CQ. The actual created size can be equal
    /// or higher than this value. `id` is an opaque identifier that is echoed by
    /// `CompletionQueue::poll`.
    ///
    /// # Errors
    ///
    ///  - `EINVAL`: Invalid `min_cq_entries` (must be `1 <= cqe <= dev_cap.max_cqe`).
    ///  - `ENOMEM`: Not enough resources to complete this operation.
    pub fn create_cq(&self, min_cq_entries: i32, id: isize) -> io::Result<CompletionQueue<'_>> {
        let cq = unsafe {
            ffi::ibv_create_cq(
                self.ctx,
                min_cq_entries,
                ptr::null::<c_void>().offset(id) as *mut _,
                ptr::null::<c_void>() as *mut _,
                0,
            )
        };

        if cq.is_null() {
            Err(io::Error::last_os_error())
        } else {
            Ok(CompletionQueue {
                _phantom: PhantomData,
                cq,
            })
        }
    }

    /// Allocate a protection domain (PDs) for the device's context.
    ///
    /// The created PD will be used primarily to create `QueuePair`s and `MemoryRegion`s.
    ///
    /// A protection domain is a means of protection, and helps you create a group of object that
    /// can work together. If several objects were created using PD1, and others were created using
    /// PD2, working with objects from group1 together with objects from group2 will not work.
    pub fn alloc_pd(&self) -> Result<ProtectionDomain<'_>, ()> {
        let pd = unsafe { ffi::ibv_alloc_pd(self.ctx) };
        if pd.is_null() {
            Err(())
        } else {
            Ok(ProtectionDomain { ctx: self, pd })
        }
    }
}

impl Drop for Context {
    fn drop(&mut self) {
        let ok = unsafe { ffi::ibv_close_device(self.ctx) };
        assert_eq!(ok, 0);
    }
}

/// A completion queue that allows subscribing to the completion of queued sends and receives.
pub struct CompletionQueue<'ctx> {
    _phantom: PhantomData<&'ctx ()>,
    cq: *mut ffi::ibv_cq,
}

unsafe impl<'a> Send for CompletionQueue<'a> {}
unsafe impl<'a> Sync for CompletionQueue<'a> {}

impl<'ctx> CompletionQueue<'ctx> {
    /// Poll for (possibly multiple) work completions.
    ///
    /// A Work Completion indicates that a Work Request in a Work Queue, and all of the outstanding
    /// unsignaled Work Requests that posted to that Work Queue, associated with this CQ have
    /// completed. Any Receive Requests, signaled Send Requests and Send Requests that ended with
    /// an error will generate Work Completions.
    ///
    /// When a Work Request ends, a Work Completion is added to the tail of the CQ that this Work
    /// Queue is associated with. `poll` checks if Work Completions are present in a CQ, and pop
    /// them from the head of the CQ in the order they entered it (FIFO) into `completions`. After
    /// a Work Completion was popped from a CQ, it cannot be returned to it. `poll` returns the
    /// subset of `completions` that successfully completed. If the returned slice has fewer
    /// elements than the provided `completions` slice, the CQ was emptied.
    ///
    /// Not all attributes of the completed `ibv_wc`'s are always valid. If the completion status
    /// is not `IBV_WC_SUCCESS`, only the following attributes are valid: `wr_id`, `status`,
    /// `qp_num`, and `vendor_err`.
    ///
    /// Note that `poll` does not block or cause a context switch. This is why RDMA technologies
    /// can achieve very low latency (below 1 µs).
    #[inline]
    pub fn poll<'c>(
        &self,
        completions: &'c mut [ffi::ibv_wc],
    ) -> Result<&'c mut [ffi::ibv_wc], ()> {
        // TODO: from http://www.rdmamojo.com/2013/02/15/ibv_poll_cq/
        //
        //   One should consume Work Completions at a rate that prevents the CQ from being overrun
        //   (hold more Work Completions than the CQ size). In case of an CQ overrun, the async
        //   event `IBV_EVENT_CQ_ERR` will be triggered, and the CQ cannot be used anymore.
        //
        let ctx: *mut ffi::ibv_context = unsafe { &*self.cq }.context;
        let ops = &mut unsafe { &mut *ctx }.ops;
        let n = unsafe {
            ops.poll_cq.as_mut().unwrap()(
                self.cq,
                completions.len() as i32,
                completions.as_mut_ptr(),
            )
        };

        if n < 0 {
            Err(())
        } else {
            Ok(&mut completions[0..n as usize])
        }
    }
}

impl<'a> Drop for CompletionQueue<'a> {
    fn drop(&mut self) {
        let errno = unsafe { ffi::ibv_destroy_cq(self.cq) };
        if errno != 0 {
            let e = io::Error::from_raw_os_error(errno);
            panic!("{}", e);
        }
    }
}

/// An unconfigured `QueuePair`.
///
/// A `QueuePairBuilder` is used to configure a `QueuePair` before it is allocated and initialized.
/// To construct one, use `ProtectionDomain::create_qp`. See also [RDMAmojo] for many more details.
///
/// [RDMAmojo]: http://www.rdmamojo.com/2013/01/12/ibv_modify_qp/
pub struct QueuePairBuilder<'res> {
    ctx: isize,
    pd: &'res ProtectionDomain<'res>,

    send: &'res CompletionQueue<'res>,
    max_send_wr: u32,
    recv: &'res CompletionQueue<'res>,
    max_recv_wr: u32,

    max_send_sge: u32,
    max_recv_sge: u32,
    max_inline_data: u32,

    qp_type: ffi::ibv_qp_type::Type,

    // carried along to handshake phase
    access: ffi::ibv_access_flags,
    timeout: u8,
    retry_count: u8,
    rnr_retry: u8,
    min_rnr_timer: u8,
}

impl<'res> QueuePairBuilder<'res> {
    /// Prepare a new `QueuePair` builder.
    ///
    /// `max_send_wr` is the maximum number of outstanding Work Requests that can be posted to the
    /// Send Queue in that Queue Pair. Value must be in `[0..dev_cap.max_qp_wr]`. There may be RDMA
    /// devices that for specific transport types may support less outstanding Work Requests than
    /// the maximum reported value.
    ///
    /// Similarly, `max_recv_wr` is the maximum number of outstanding Work Requests that can be
    /// posted to the Receive Queue in that Queue Pair. Value must be in `[0..dev_cap.max_qp_wr]`.
    /// There may be RDMA devices that for specific transport types may support less outstanding
    /// Work Requests than the maximum reported value. This value is ignored if the Queue Pair is
    /// associated with an SRQ
    fn new<'scq, 'rcq, 'pd>(
        pd: &'pd ProtectionDomain<'_>,
        send: &'scq CompletionQueue<'_>,
        max_send_wr: u32,
        recv: &'rcq CompletionQueue<'_>,
        max_recv_wr: u32,
        qp_type: ffi::ibv_qp_type::Type,
    ) -> QueuePairBuilder<'res>
    where
        'scq: 'res,
        'rcq: 'res,
        'pd: 'res,
    {
        QueuePairBuilder {
            ctx: 0,
            pd,

            send,
            max_send_wr,
            recv,
            max_recv_wr,

            max_send_sge: 1,
            max_recv_sge: 1,
            max_inline_data: 0,

            qp_type,

            access: ffi::ibv_access_flags::IBV_ACCESS_LOCAL_WRITE,
            min_rnr_timer: 16,
            retry_count: 6,
            rnr_retry: 6,
            timeout: 4,
        }
    }

    /// Set the access flags for the new `QueuePair`.
    ///
    /// Defaults to `IBV_ACCESS_LOCAL_WRITE`.
    pub fn set_access(&mut self, access: ffi::ibv_access_flags) -> &mut Self {
        self.access = access;
        self
    }

    /// Set the access flags of the new `QueuePair` such that it allows remote reads and writes.
    pub fn allow_remote_rw(&mut self) -> &mut Self {
        self.access = self.access
            | ffi::ibv_access_flags::IBV_ACCESS_REMOTE_WRITE
            | ffi::ibv_access_flags::IBV_ACCESS_REMOTE_READ;
        self
    }

    /// Sets the minimum RNR NAK Timer Field Value for the new `QueuePair`.
    ///
    /// Defaults to 16 (2.56 ms delay).
    /// Relevant only for RC QPs.
    ///
    /// When an incoming message to this QP should consume a Work Request from the Receive Queue,
    /// but no Work Request is outstanding on that Queue, the QP will send an RNR NAK packet to
    /// the initiator. It does not affect RNR NAKs sent for other reasons. The value must be one of
    /// the following values:
    ///
    ///  - 0 - 655.36 ms delay
    ///  - 1 - 0.01 ms delay
    ///  - 2 - 0.02 ms delay
    ///  - 3 - 0.03 ms delay
    ///  - 4 - 0.04 ms delay
    ///  - 5 - 0.06 ms delay
    ///  - 6 - 0.08 ms delay
    ///  - 7 - 0.12 ms delay
    ///  - 8 - 0.16 ms delay
    ///  - 9 - 0.24 ms delay
    ///  - 10 - 0.32 ms delay
    ///  - 11 - 0.48 ms delay
    ///  - 12 - 0.64 ms delay
    ///  - 13 - 0.96 ms delay
    ///  - 14 - 1.28 ms delay
    ///  - 15 - 1.92 ms delay
    ///  - 16 - 2.56 ms delay
    ///  - 17 - 3.84 ms delay
    ///  - 18 - 5.12 ms delay
    ///  - 19 - 7.68 ms delay
    ///  - 20 - 10.24 ms delay
    ///  - 21 - 15.36 ms delay
    ///  - 22 - 20.48 ms delay
    ///  - 23 - 30.72 ms delay
    ///  - 24 - 40.96 ms delay
    ///  - 25 - 61.44 ms delay
    ///  - 26 - 81.92 ms delay
    ///  - 27 - 122.88 ms delay
    ///  - 28 - 163.84 ms delay
    ///  - 29 - 245.76 ms delay
    ///  - 30 - 327.68 ms delay
    ///  - 31 - 491.52 ms delay
    pub fn set_min_rnr_timer(&mut self, timer: u8) -> &mut Self {
        self.min_rnr_timer = timer;
        self
    }

    /// Sets the minimum timeout that the new `QueuePair` waits for ACK/NACK from remote QP before
    /// retransmitting the packet.
    ///
    /// Defaults to 4 (65.536µs).
    /// Relevant only to RC QPs.
    ///
    /// The value zero is special value that waits an infinite time for the ACK/NACK (useful
    /// for debugging). This means that if any packet in a message is being lost and no ACK or NACK
    /// is being sent, no retry will ever occur and the QP will just stop sending data.
    ///
    /// For any other value of timeout, the time calculation is `4.096*2^timeout`µs, giving:
    ///
    ///  - 0 - infinite
    ///  - 1 - 8.192 µs
    ///  - 2 - 16.384 µs
    ///  - 3 - 32.768 µs
    ///  - 4 - 65.536 µs
    ///  - 5 - 131.072 µs
    ///  - 6 - 262.144 µs
    ///  - 7 - 524.288 µs
    ///  - 8 - 1.048 ms
    ///  - 9 - 2.097 ms
    ///  - 10 - 4.194 ms
    ///  - 11 - 8.388 ms
    ///  - 12 - 16.777 ms
    ///  - 13 - 33.554 ms
    ///  - 14 - 67.108 ms
    ///  - 15 - 134.217 ms
    ///  - 16 - 268.435 ms
    ///  - 17 - 536.870 ms
    ///  - 18 - 1.07 s
    ///  - 19 - 2.14 s
    ///  - 20 - 4.29 s
    ///  - 21 - 8.58 s
    ///  - 22 - 17.1 s
    ///  - 23 - 34.3 s
    ///  - 24 - 68.7 s
    ///  - 25 - 137 s
    ///  - 26 - 275 s
    ///  - 27 - 550 s
    ///  - 28 - 1100 s
    ///  - 29 - 2200 s
    ///  - 30 - 4400 s
    ///  - 31 - 8800 s
    pub fn set_timeout(&mut self, timeout: u8) -> &mut Self {
        self.timeout = timeout;
        self
    }

    /// Sets the total number of times that the new `QueuePair` will try to resend the packets
    /// before reporting an error because the remote side doesn't answer in the primary path.
    ///
    /// This 3 bit value defaults to 6.
    ///
    /// # Panics
    ///
    /// Panics if a count higher than 7 is given.
    pub fn set_retry_count(&mut self, count: u8) -> &mut Self {
        assert!(count <= 7);
        self.retry_count = count;
        self
    }

    /// Sets the total number of times that the new `QueuePair` will try to resend the packets when
    /// an RNR NACK was sent by the remote QP before reporting an error.
    ///
    /// This 3 bit value defaults to 6. The value 7 is special and specify to retry sending the
    /// message indefinitely when a RNR Nack is being sent by remote side.
    ///
    /// # Panics
    ///
    /// Panics if a limit higher than 7 is given.
    pub fn set_rnr_retry(&mut self, n: u8) -> &mut Self {
        assert!(n <= 7);
        self.rnr_retry = n;
        self
    }

    /// Set the opaque context value for the new `QueuePair`.
    ///
    /// Defaults to 0.
    pub fn set_context(&mut self, ctx: isize) -> &mut Self {
        self.ctx = ctx;
        self
    }

    /// Create a new `QueuePair` from this builder template.
    ///
    /// The returned `QueuePair` is associated with the builder's `ProtectionDomain`.
    ///
    /// This method will fail if asked to create QP of a type other than `IBV_QPT_RC` or
    /// `IBV_QPT_UD` associated with an SRQ.
    ///
    /// # Errors
    ///
    ///  - `EINVAL`: Invalid `ProtectionDomain`, sending or receiving `Context`, or invalid value
    ///    provided in `max_send_wr`, `max_recv_wr`, or in `max_inline_data`.
    ///  - `ENOMEM`: Not enough resources to complete this operation.
    ///  - `ENOSYS`: QP with this Transport Service Type isn't supported by this RDMA device.
    ///  - `EPERM`: Not enough permissions to create a QP with this Transport Service Type.
    pub fn build(&self) -> io::Result<PreparedQueuePair<'res>> {
        let mut attr = ffi::ibv_qp_init_attr {
            qp_context: unsafe { ptr::null::<c_void>().offset(self.ctx) } as *mut _,
            send_cq: self.send.cq as *const _ as *mut _,
            recv_cq: self.recv.cq as *const _ as *mut _,
            srq: ptr::null::<ffi::ibv_srq>() as *mut _,
            cap: ffi::ibv_qp_cap {
                max_send_wr: self.max_send_wr,
                max_recv_wr: self.max_recv_wr,
                max_send_sge: self.max_send_sge,
                max_recv_sge: self.max_recv_sge,
                max_inline_data: self.max_inline_data,
            },
            qp_type: self.qp_type,
            sq_sig_all: 0,
        };

        let qp = unsafe { ffi::ibv_create_qp(self.pd.pd, &mut attr as *mut _) };
        if qp.is_null() {
            Err(io::Error::last_os_error())
        } else {
            Ok(PreparedQueuePair {
                ctx: self.pd.ctx,
                qp: QueuePair {
                    _phantom: PhantomData,
                    qp,
                },
                access: self.access,
                timeout: self.timeout,
                retry_count: self.retry_count,
                rnr_retry: self.rnr_retry,
                min_rnr_timer: self.min_rnr_timer,
            })
        }
    }
}

/// An allocated but uninitialized `QueuePair`.
///
/// Specifically, this `QueuePair` has been allocated with `ibv_create_qp`, but has not yet been
/// initialized with calls to `ibv_modify_qp`.
///
/// To complete the construction of the `QueuePair`, you will need to obtain the
/// `QueuePairEndpoint` of the remote end (by using `PreparedQueuePair::endpoint`), and then call
/// `PreparedQueuePair::handshake` on both sides with the other side's `QueuePairEndpoint`:
///
/// ```rust,ignore
/// // on host 1
/// let pqp: PreparedQueuePair = ...;
/// let host1end = pqp.endpoint();
/// host2.send(host1end);
/// let host2end = host2.recv();
/// let qp = pqp.handshake(host2end);
///
/// // on host 2
/// let pqp: PreparedQueuePair = ...;
/// let host2end = pqp.endpoint();
/// host1.send(host2end);
/// let host1end = host1.recv();
/// let qp = pqp.handshake(host1end);
/// ```
pub struct PreparedQueuePair<'res> {
    ctx: &'res Context,
    qp: QueuePair<'res>,

    // carried from builder
    access: ffi::ibv_access_flags,
    min_rnr_timer: u8,
    timeout: u8,
    retry_count: u8,
    rnr_retry: u8,
}

/// A Global identifier for ibv.
///
/// This struct acts as a rust wrapper for `ffi::ibv_gid`. We use it instead of
/// `ffi::ibv_giv` because `ffi::ibv_gid` is actually an untagged union.
///
/// ```c
/// union ibv_gid {
///     uint8_t   raw[16];
///     struct {
///         __be64 subnet_prefix;
///         __be64 interface_id;
///     } global;
/// };
/// ```
///
/// It appears that `global` exists for convenience, but can be safely ignored.
/// For continuity, the methods `subnet_prefix` and `interface_id` are provided.
/// These methods read the array as big endian, regardless of native cpu
/// endianness.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Default, Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[repr(transparent)]
pub struct Gid {
    raw: [u8; 16],
}

impl Gid {
    /// Expose the subnet_prefix component of the `Gid` as a u64. This is
    /// equivalent to accessing the `global.subnet_prefix` component of the
    /// `ffi::ibv_gid` union.
    #[allow(dead_code)]
    fn subnet_prefix(&self) -> u64 {
        u64::from_be_bytes(self.raw[..8].try_into().unwrap())
    }

    /// Expose the interface_id component of the `Gid` as a u64. This is
    /// equivalent to accessing the `global.interface_id` component of the
    /// `ffi::ibv_gid` union.
    #[allow(dead_code)]
    fn interface_id(&self) -> u64 {
        u64::from_be_bytes(self.raw[8..].try_into().unwrap())
    }
}

impl From<ffi::ibv_gid> for Gid {
    fn from(gid: ffi::ibv_gid) -> Self {
        Self {
            raw: unsafe { gid.raw },
        }
    }
}

impl From<Gid> for ffi::ibv_gid {
    fn from(mut gid: Gid) -> Self {
        *gid.as_mut()
    }
}

impl AsRef<ffi::ibv_gid> for Gid {
    fn as_ref(&self) -> &ffi::ibv_gid {
        unsafe { &*self.raw.as_ptr().cast::<ffi::ibv_gid>() }
    }
}

impl AsMut<ffi::ibv_gid> for Gid {
    fn as_mut(&mut self) -> &mut ffi::ibv_gid {
        unsafe { &mut *self.raw.as_mut_ptr().cast::<ffi::ibv_gid>() }
    }
}

/// An identifier for the network endpoint of a `QueuePair`.
///
/// Internally, this contains the `QueuePair`'s `qp_num`, as well as the context's `lid` and `gid`.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct QueuePairEndpoint {
    /// the `QueuePair`'s `qp_num`
    pub num: u32,
    /// the context's `lid`
    pub lid: u16,
    /// the context's `gid`, used for global routing
    pub gid: Option<Gid>,
}

impl<'res> PreparedQueuePair<'res> {
    /// Get the network endpoint for this `QueuePair`.
    ///
    /// This endpoint will need to be communicated to the `QueuePair` on the remote end.
    pub fn endpoint(&self) -> QueuePairEndpoint {
        let num = unsafe { &*self.qp.qp }.qp_num;

        QueuePairEndpoint {
            num,
            lid: self.ctx.port_attr.lid,
            gid: Some(self.ctx.gid),
        }
    }

    /// Set up the `QueuePair` such that it is ready to exchange packets with a remote `QueuePair`.
    ///
    /// Internally, this uses `ibv_modify_qp` to mark the `QueuePair` as initialized
    /// (`IBV_QPS_INIT`), ready to receive (`IBV_QPS_RTR`), and ready to send (`IBV_QPS_RTS`).
    /// Further discussion of the protocol can be found on [RDMAmojo].
    ///
    /// If the endpoint contains a Gid, the routing will be global. This means:
    /// ```text,ignore
    /// ah_attr.is_global = 1;
    /// ah_attr.grh.hop_limit = 0xff;
    /// ```
    ///
    /// The handshake also sets the following parameters, which are currently not configurable:
    ///
    /// # Examples
    ///
    /// ```text,ignore
    /// port_num = PORT_NUM;
    /// pkey_index = 0;
    /// rq_psn = 0;
    /// sq_psn = 0;
    ///
    /// max_dest_rd_atomic = 1;
    /// max_rd_atomic = 1;
    ///
    /// ah_attr.sl = 0;
    /// ah_attr.src_path_bits = 0;
    /// ```
    ///
    /// # Errors
    ///
    ///  - `EINVAL`: Invalid value provided in `attr` or in `attr_mask`.
    ///  - `ENOMEM`: Not enough resources to complete this operation.
    ///
    /// [RDMAmojo]: http://www.rdmamojo.com/2014/01/18/connecting-queue-pairs/
    pub fn handshake(self, remote: QueuePairEndpoint) -> io::Result<QueuePair<'res>> {
        // init and associate with port
        let mut attr = ffi::ibv_qp_attr {
            qp_state: ffi::ibv_qp_state::IBV_QPS_INIT,
            qp_access_flags: self.access.0,
            pkey_index: 0,
            port_num: PORT_NUM,
            ..Default::default()
        };
        let mask = ffi::ibv_qp_attr_mask::IBV_QP_STATE
            | ffi::ibv_qp_attr_mask::IBV_QP_PKEY_INDEX
            | ffi::ibv_qp_attr_mask::IBV_QP_PORT
            | ffi::ibv_qp_attr_mask::IBV_QP_ACCESS_FLAGS;
        let errno = unsafe { ffi::ibv_modify_qp(self.qp.qp, &mut attr as *mut _, mask.0 as i32) };
        if errno != 0 {
            return Err(io::Error::from_raw_os_error(errno));
        }

        // set ready to receive
        let mut attr = ffi::ibv_qp_attr {
            qp_state: ffi::ibv_qp_state::IBV_QPS_RTR,
            path_mtu: self.ctx.port_attr.active_mtu,
            dest_qp_num: remote.num,
            rq_psn: 0,
            max_dest_rd_atomic: 1,
            min_rnr_timer: self.min_rnr_timer,
            ah_attr: ffi::ibv_ah_attr {
                dlid: remote.lid,
                sl: 0,
                src_path_bits: 0,
                port_num: PORT_NUM,
                grh: Default::default(),
                ..Default::default()
            },
            ..Default::default()
        };
        if let Some(gid) = remote.gid {
            attr.ah_attr.is_global = 1;
            attr.ah_attr.grh.dgid = gid.into();
            attr.ah_attr.grh.hop_limit = 0xff;
        }
        let mask = ffi::ibv_qp_attr_mask::IBV_QP_STATE
            | ffi::ibv_qp_attr_mask::IBV_QP_AV
            | ffi::ibv_qp_attr_mask::IBV_QP_PATH_MTU
            | ffi::ibv_qp_attr_mask::IBV_QP_DEST_QPN
            | ffi::ibv_qp_attr_mask::IBV_QP_RQ_PSN
            | ffi::ibv_qp_attr_mask::IBV_QP_MAX_DEST_RD_ATOMIC
            | ffi::ibv_qp_attr_mask::IBV_QP_MIN_RNR_TIMER;
        let errno = unsafe { ffi::ibv_modify_qp(self.qp.qp, &mut attr as *mut _, mask.0 as i32) };
        if errno != 0 {
            return Err(io::Error::from_raw_os_error(errno));
        }

        // set ready to send
        let mut attr = ffi::ibv_qp_attr {
            qp_state: ffi::ibv_qp_state::IBV_QPS_RTS,
            timeout: self.timeout,
            retry_cnt: self.retry_count,
            sq_psn: 0,
            rnr_retry: self.rnr_retry,
            max_rd_atomic: 1,
            ..Default::default()
        };
        let mask = ffi::ibv_qp_attr_mask::IBV_QP_STATE
            | ffi::ibv_qp_attr_mask::IBV_QP_TIMEOUT
            | ffi::ibv_qp_attr_mask::IBV_QP_RETRY_CNT
            | ffi::ibv_qp_attr_mask::IBV_QP_SQ_PSN
            | ffi::ibv_qp_attr_mask::IBV_QP_RNR_RETRY
            | ffi::ibv_qp_attr_mask::IBV_QP_MAX_QP_RD_ATOMIC;
        let errno = unsafe { ffi::ibv_modify_qp(self.qp.qp, &mut attr as *mut _, mask.0 as i32) };
        if errno != 0 {
            return Err(io::Error::from_raw_os_error(errno));
        }

        Ok(self.qp)
    }
}

/// A memory region that has been registered for use with RDMA.
pub struct MemoryRegion<T> {
    mr: *mut ffi::ibv_mr,
    data: Vec<T>,
}

unsafe impl<T> Send for MemoryRegion<T> {}
unsafe impl<T> Sync for MemoryRegion<T> {}

use std::ops::{Deref, DerefMut};
impl<T> Deref for MemoryRegion<T> {
    type Target = [T];
    fn deref(&self) -> &Self::Target {
        &self.data[..]
    }
}

impl<T> DerefMut for MemoryRegion<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.data[..]
    }
}

impl<T> MemoryRegion<T> {
    /// Get the remote authentication key used to allow direct remote access to this memory region.
    pub fn rkey(&self) -> RemoteKey {
        RemoteKey(unsafe { &*self.mr }.rkey)
    }
}

/// A key that authorizes direct memory access to a memory region.
pub struct RemoteKey(u32);

impl<T> Drop for MemoryRegion<T> {
    fn drop(&mut self) {
        let errno = unsafe { ffi::ibv_dereg_mr(self.mr) };
        if errno != 0 {
            let e = io::Error::from_raw_os_error(errno);
            panic!("{}", e);
        }
    }
}

/// A protection domain for a device's context.
pub struct ProtectionDomain<'ctx> {
    ctx: &'ctx Context,
    pd: *mut ffi::ibv_pd,
}

unsafe impl<'a> Sync for ProtectionDomain<'a> {}
unsafe impl<'a> Send for ProtectionDomain<'a> {}

impl<'ctx> ProtectionDomain<'ctx> {
    /// Creates a queue pair builder associated with this protection domain.
    ///
    /// `send` and `recv` are the device `Context` to associate with the send and receive queues
    /// respectively. `send` and `recv` may refer to the same `Context`.
    ///
    /// `qp_type` indicates the requested Transport Service Type of this QP:
    ///
    ///  - `IBV_QPT_RC`: Reliable Connection
    ///  - `IBV_QPT_UC`: Unreliable Connection
    ///  - `IBV_QPT_UD`: Unreliable Datagram
    ///
    /// Note that both this protection domain, *and* both provided completion queues, must outlive
    /// the resulting `QueuePair`.
    pub fn create_qp<'pd, 'scq, 'rcq, 'res>(
        &'pd self,
        send: &'scq CompletionQueue<'_>,
        recv: &'rcq CompletionQueue<'_>,
        qp_type: ffi::ibv_qp_type::Type,
    ) -> QueuePairBuilder<'res>
    where
        'scq: 'res,
        'rcq: 'res,
        'pd: 'res,
    {
        QueuePairBuilder::new(self, send, 1, recv, 1, qp_type)
    }

    /// Allocates and registers a Memory Region (MR) associated with this `ProtectionDomain`.
    ///
    /// This process allows the RDMA device to read and write data to the allocated memory. Only
    /// registered memory can be sent from and received to by `QueuePair`s. Performing this
    /// registration takes some time, so performing memory registration isn't recommended in the
    /// data path, when fast response is required.
    ///
    /// Every successful registration will result with a MR which has unique (within a specific
    /// RDMA device) `lkey` and `rkey` values. These keys must be communicated to the other end's
    /// `QueuePair` for direct memory access.
    ///
    /// The maximum size of the block that can be registered is limited to
    /// `device_attr.max_mr_size`. There isn't any way to know what is the total size of memory
    /// that can be registered for a specific device.
    ///
    /// `allocate` currently sets the following permissions for each new `MemoryRegion`:
    ///
    ///  - `IBV_ACCESS_LOCAL_WRITE`: Enables Local Write Access
    ///  - `IBV_ACCESS_REMOTE_WRITE`: Enables Remote Write Access
    ///  - `IBV_ACCESS_REMOTE_READ`: Enables Remote Read Access
    ///  - `IBV_ACCESS_REMOTE_ATOMIC`: Enables Remote Atomic Operation Access (if supported)
    ///
    /// Local read access is always enabled for the MR.
    ///
    /// # Panics
    ///
    /// Panics if the size of the memory region zero bytes, which can occur either if `n` is 0, or
    /// if `mem::size_of::<T>()` is 0.
    ///
    /// # Errors
    ///
    ///  - `EINVAL`: Invalid access value.
    ///  - `ENOMEM`: Not enough resources (either in operating system or in RDMA device) to
    ///    complete this operation.
    pub fn allocate<T: Sized + Copy + Default>(&self, n: usize) -> io::Result<MemoryRegion<T>> {
        assert!(n > 0);
        assert!(mem::size_of::<T>() > 0);

        let mut data = Vec::with_capacity(n);
        data.resize(n, T::default());

        let access = ffi::ibv_access_flags::IBV_ACCESS_LOCAL_WRITE
            | ffi::ibv_access_flags::IBV_ACCESS_REMOTE_WRITE
            | ffi::ibv_access_flags::IBV_ACCESS_REMOTE_READ
            | ffi::ibv_access_flags::IBV_ACCESS_REMOTE_ATOMIC;
        let mr = unsafe {
            ffi::ibv_reg_mr(
                self.pd,
                data.as_mut_ptr() as *mut _,
                n * mem::size_of::<T>(),
                access.0 as i32,
            )
        };

        // TODO
        // ibv_reg_mr()  returns  a  pointer to the registered MR, or NULL if the request fails.
        // The local key (L_Key) field lkey is used as the lkey field of struct ibv_sge when
        // posting buffers with ibv_post_* verbs, and the the remote key (R_Key)  field rkey  is
        // used by remote processes to perform Atomic and RDMA operations.  The remote process
        // places this rkey as the rkey field of struct ibv_send_wr passed to the ibv_post_send
        // function.

        if mr.is_null() {
            Err(io::Error::last_os_error())
        } else {
            Ok(MemoryRegion { mr, data })
        }
    }
}

impl<'a> Drop for ProtectionDomain<'a> {
    fn drop(&mut self) {
        let errno = unsafe { ffi::ibv_dealloc_pd(self.pd) };
        if errno != 0 {
            let e = io::Error::from_raw_os_error(errno);
            panic!("{}", e);
        }
    }
}

/// A fully initialized and ready `QueuePair`.
///
/// A queue pair is the actual object that sends and receives data in the RDMA architecture
/// (something like a socket). It's not exactly like a socket, however. A socket is an abstraction,
/// which is maintained by the network stack and doesn't have a physical resource behind it. A QP
/// is a resource of an RDMA device and a QP number can be used by one process at the same time
/// (similar to a socket that is associated with a specific TCP or UDP port number)
pub struct QueuePair<'res> {
    _phantom: PhantomData<&'res ()>,
    qp: *mut ffi::ibv_qp,
}

unsafe impl<'a> Send for QueuePair<'a> {}
unsafe impl<'a> Sync for QueuePair<'a> {}

impl<'res> QueuePair<'res> {
    /// Posts a linked list of Work Requests (WRs) to the Send Queue of this Queue Pair.
    ///
    /// Generates a HW-specific Send Request for the memory at `mr[range]`, and adds it to the tail
    /// of the Queue Pair's Send Queue without performing any context switch. The RDMA device will
    /// handle it (later) in asynchronous way. If there is a failure in one of the WRs because the
    /// Send Queue is full or one of the attributes in the WR is bad, it stops immediately and
    /// return the pointer to that WR.
    ///
    /// `wr_id` is a 64 bits value associated with this WR. If a Work Completion will be generated
    /// when this Work Request ends, it will contain this value.
    ///
    /// Internally, the memory at `mr[range]` will be sent as a single `ibv_send_wr` using
    /// `IBV_WR_SEND`. The send has `IBV_SEND_SIGNALED` set, so a work completion will also be
    /// triggered as a result of this send.
    ///
    /// See also [RDMAmojo's `ibv_post_send` documentation][1].
    ///
    /// # Safety
    ///
    /// The memory region can only be safely reused or dropped after the request is fully executed
    /// and a work completion has been retrieved from the corresponding completion queue (i.e.,
    /// until `CompletionQueue::poll` returns a completion for this send).
    ///
    /// # Errors
    ///
    ///  - `EINVAL`: Invalid value provided in the Work Request.
    ///  - `ENOMEM`: Send Queue is full or not enough resources to complete this operation.
    ///  - `EFAULT`: Invalid value provided in `QueuePair`.
    ///
    /// [1]: http://www.rdmamojo.com/2013/01/26/ibv_post_send/
    #[inline]
    pub unsafe fn post_send<T, R>(
        &mut self,
        mr: &mut MemoryRegion<T>,
        range: R,
        wr_id: u64,
    ) -> io::Result<()>
    where
        R: sliceindex::SliceIndex<[T], Output = [T]>,
    {
        let range = range.index(mr);
        let mut sge = ffi::ibv_sge {
            addr: range.as_ptr() as u64,
            length: mem::size_of_val(range) as u32,
            lkey: (*mr.mr).lkey,
        };
        let mut wr = ffi::ibv_send_wr {
            wr_id,
            next: ptr::null::<ffi::ibv_send_wr>() as *mut _,
            sg_list: &mut sge as *mut _,
            num_sge: 1,
            opcode: ffi::ibv_wr_opcode::IBV_WR_SEND,
            send_flags: ffi::ibv_send_flags::IBV_SEND_SIGNALED.0,
            wr: Default::default(),
            qp_type: Default::default(),
            __bindgen_anon_1: Default::default(),
            __bindgen_anon_2: Default::default(),
        };
        let mut bad_wr: *mut ffi::ibv_send_wr = ptr::null::<ffi::ibv_send_wr>() as *mut _;

        // TODO:
        //
        // ibv_post_send()  posts the linked list of work requests (WRs) starting with wr to the
        // send queue of the queue pair qp.  It stops processing WRs from this list at the first
        // failure (that can  be  detected  immediately  while  requests  are  being posted), and
        // returns this failing WR through bad_wr.
        //
        // The user should not alter or destroy AHs associated with WRs until request is fully
        // executed and  a  work  completion  has been retrieved from the corresponding completion
        // queue (CQ) to avoid unexpected behavior.
        //
        // ... However, if the IBV_SEND_INLINE flag was set, the  buffer  can  be reused
        // immediately after the call returns.

        let ctx = (*self.qp).context;
        let ops = &mut (*ctx).ops;
        let errno =
            ops.post_send.as_mut().unwrap()(self.qp, &mut wr as *mut _, &mut bad_wr as *mut _);
        if errno != 0 {
            Err(io::Error::from_raw_os_error(errno))
        } else {
            Ok(())
        }
    }

    /// Posts a linked list of Work Requests (WRs) to the Receive Queue of this Queue Pair.
    ///
    /// Generates a HW-specific Receive Request out of it and add it to the tail of the Queue
    /// Pair's Receive Queue without performing any context switch. The RDMA device will take one
    /// of those Work Requests as soon as an incoming opcode to that QP will consume a Receive
    /// Request (RR). If there is a failure in one of the WRs because the Receive Queue is full or
    /// one of the attributes in the WR is bad, it stops immediately and return the pointer to that
    /// WR.
    ///
    /// `wr_id` is a 64 bits value associated with this WR. When a Work Completion is generated
    /// when this Work Request ends, it will contain this value.
    ///
    /// Internally, the memory at `mr[range]` will be received into as a single `ibv_recv_wr`.
    ///
    /// See also [DDMAmojo's `ibv_post_recv` documentation][1].
    ///
    /// # Safety
    ///
    /// The memory region can only be safely reused or dropped after the request is fully executed
    /// and a work completion has been retrieved from the corresponding completion queue (i.e.,
    /// until `CompletionQueue::poll` returns a completion for this receive).
    ///
    /// # Errors
    ///
    ///  - `EINVAL`: Invalid value provided in the Work Request.
    ///  - `ENOMEM`: Receive Queue is full or not enough resources to complete this operation.
    ///  - `EFAULT`: Invalid value provided in `QueuePair`.
    ///
    /// [1]: http://www.rdmamojo.com/2013/02/02/ibv_post_recv/
    #[inline]
    pub unsafe fn post_receive<T, R>(
        &mut self,
        mr: &mut MemoryRegion<T>,
        range: R,
        wr_id: u64,
    ) -> io::Result<()>
    where
        R: sliceindex::SliceIndex<[T], Output = [T]>,
    {
        let range = range.index(mr);
        let mut sge = ffi::ibv_sge {
            addr: range.as_ptr() as u64,
            length: mem::size_of_val(range) as u32,
            lkey: (*mr.mr).lkey,
        };
        let mut wr = ffi::ibv_recv_wr {
            wr_id,
            next: ptr::null::<ffi::ibv_send_wr>() as *mut _,
            sg_list: &mut sge as *mut _,
            num_sge: 1,
        };
        let mut bad_wr: *mut ffi::ibv_recv_wr = ptr::null::<ffi::ibv_recv_wr>() as *mut _;

        // TODO:
        //
        // If the QP qp is associated with a shared receive queue, you must use the function
        // ibv_post_srq_recv(), and not ibv_post_recv(), since the QP's own receive queue will not
        // be used.
        //
        // If a WR is being posted to a UD QP, the Global Routing Header (GRH) of the incoming
        // message will be placed in the first 40 bytes of the buffer(s) in the scatter list. If no
        // GRH is present in the incoming message, then the first  bytes  will  be undefined. This
        // means that in all cases, the actual data of the incoming message will start at an offset
        // of 40 bytes into the buffer(s) in the scatter list.

        let ctx = (*self.qp).context;
        let ops = &mut (*ctx).ops;
        let errno =
            ops.post_recv.as_mut().unwrap()(self.qp, &mut wr as *mut _, &mut bad_wr as *mut _);
        if errno != 0 {
            Err(io::Error::from_raw_os_error(errno))
        } else {
            Ok(())
        }
    }
}

impl<'a> Drop for QueuePair<'a> {
    fn drop(&mut self) {
        // TODO: ibv_destroy_qp() fails if the QP is attached to a multicast group.
        let errno = unsafe { ffi::ibv_destroy_qp(self.qp) };
        if errno != 0 {
            let e = io::Error::from_raw_os_error(errno);
            panic!("{}", e);
        }
    }
}

#[cfg(all(test, feature = "serde"))]
mod test_serde {
    use super::*;
    #[test]
    fn encode_decode() {
        let qpe_default = QueuePairEndpoint {
            num: 72,
            lid: 9,
            gid: Some(Default::default()),
        };

        let mut qpe = qpe_default;
        qpe.gid.as_mut().unwrap().raw =
            unsafe { std::mem::transmute([87_u64.to_be(), 192_u64.to_be()]) };
        let encoded = bincode::serialize(&qpe).unwrap();

        let decoded: QueuePairEndpoint = bincode::deserialize(&encoded).unwrap();
        assert_eq!(decoded.gid.unwrap().subnet_prefix(), 87);
        assert_eq!(decoded.gid.unwrap().interface_id(), 192);
        assert_eq!(qpe, decoded);
        assert_ne!(qpe, qpe_default);
    }

    #[test]
    fn encode_decode_guid() {
        let guid_u64 = 0x12_34_56_78_9a_bc_de_f0_u64;
        let _be: ffi::__be64 = guid_u64.to_be();
        let guid: Guid = guid_u64.into();

        assert_eq!(guid.is_reserved(), false);
        assert_eq!(guid.raw, [0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0]);
        println!("{:#08x}", guid.oui());
        assert_eq!(guid.oui(), 0x123456);
    }
}