1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
// Copyright © SixtyFPS GmbH <info@slint.dev>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-Royalty-free-1.1 OR LicenseRef-Slint-commercial

/*!
This module contains types that are public and re-exported in the slint-rs as well as the slint-interpreter crate as public API.
*/

#![warn(missing_docs)]

#[cfg(target_has_atomic = "ptr")]
pub use crate::future::*;
use crate::input::{KeyEventType, MouseEvent};
use crate::item_tree::ItemTreeVTable;
use crate::window::{WindowAdapter, WindowInner};
#[cfg(not(feature = "std"))]
use alloc::boxed::Box;
#[cfg(not(feature = "std"))]
use alloc::string::String;

/// A position represented in the coordinate space of logical pixels. That is the space before applying
/// a display device specific scale factor.
#[derive(Debug, Default, Copy, Clone, PartialEq)]
#[repr(C)]
pub struct LogicalPosition {
    /// The x coordinate.
    pub x: f32,
    /// The y coordinate.
    pub y: f32,
}

impl LogicalPosition {
    /// Construct a new logical position from the given x and y coordinates, that are assumed to be
    /// in the logical coordinate space.
    pub const fn new(x: f32, y: f32) -> Self {
        Self { x, y }
    }

    /// Convert a given physical position to a logical position by dividing the coordinates with the
    /// specified scale factor.
    pub fn from_physical(physical_pos: PhysicalPosition, scale_factor: f32) -> Self {
        Self::new(physical_pos.x as f32 / scale_factor, physical_pos.y as f32 / scale_factor)
    }

    /// Convert this logical position to a physical position by multiplying the coordinates with the
    /// specified scale factor.
    pub fn to_physical(&self, scale_factor: f32) -> PhysicalPosition {
        PhysicalPosition::from_logical(*self, scale_factor)
    }

    pub(crate) fn to_euclid(self) -> crate::lengths::LogicalPoint {
        [self.x as _, self.y as _].into()
    }
    pub(crate) fn from_euclid(p: crate::lengths::LogicalPoint) -> Self {
        Self::new(p.x as _, p.y as _)
    }
}

/// A position represented in the coordinate space of physical device pixels. That is the space after applying
/// a display device specific scale factor to pixels from the logical coordinate space.
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
pub struct PhysicalPosition {
    /// The x coordinate.
    pub x: i32,
    /// The y coordinate.
    pub y: i32,
}

impl PhysicalPosition {
    /// Construct a new physical position from the given x and y coordinates, that are assumed to be
    /// in the physical coordinate space.
    pub const fn new(x: i32, y: i32) -> Self {
        Self { x, y }
    }

    /// Convert a given logical position to a physical position by multiplying the coordinates with the
    /// specified scale factor.
    pub fn from_logical(logical_pos: LogicalPosition, scale_factor: f32) -> Self {
        Self::new((logical_pos.x * scale_factor) as i32, (logical_pos.y * scale_factor) as i32)
    }

    /// Convert this physical position to a logical position by dividing the coordinates with the
    /// specified scale factor.
    pub fn to_logical(&self, scale_factor: f32) -> LogicalPosition {
        LogicalPosition::from_physical(*self, scale_factor)
    }

    #[cfg(feature = "ffi")]
    pub(crate) fn to_euclid(&self) -> crate::graphics::euclid::default::Point2D<i32> {
        [self.x, self.y].into()
    }

    #[cfg(feature = "ffi")]
    pub(crate) fn from_euclid(p: crate::graphics::euclid::default::Point2D<i32>) -> Self {
        Self::new(p.x as _, p.y as _)
    }
}

/// The position of the window in either physical or logical pixels. This is used
/// with [`Window::set_position`].
#[derive(Clone, Debug, derive_more::From, PartialEq)]
pub enum WindowPosition {
    /// The position in physical pixels.
    Physical(PhysicalPosition),
    /// The position in logical pixels.
    Logical(LogicalPosition),
}

impl WindowPosition {
    /// Turn the `WindowPosition` into a `PhysicalPosition`.
    pub fn to_physical(&self, scale_factor: f32) -> PhysicalPosition {
        match self {
            WindowPosition::Physical(pos) => *pos,
            WindowPosition::Logical(pos) => pos.to_physical(scale_factor),
        }
    }
}

/// A size represented in the coordinate space of logical pixels. That is the space before applying
/// a display device specific scale factor.
#[repr(C)]
#[derive(Debug, Default, Copy, Clone, PartialEq)]
pub struct LogicalSize {
    /// The width in logical pixels.
    pub width: f32,
    /// The height in logical.
    pub height: f32,
}

impl LogicalSize {
    /// Construct a new logical size from the given width and height values, that are assumed to be
    /// in the logical coordinate space.
    pub const fn new(width: f32, height: f32) -> Self {
        Self { width, height }
    }

    /// Convert a given physical size to a logical size by dividing width and height by the
    /// specified scale factor.
    pub fn from_physical(physical_size: PhysicalSize, scale_factor: f32) -> Self {
        Self::new(
            physical_size.width as f32 / scale_factor,
            physical_size.height as f32 / scale_factor,
        )
    }

    /// Convert this logical size to a physical size by multiplying width and height with the
    /// specified scale factor.
    pub fn to_physical(&self, scale_factor: f32) -> PhysicalSize {
        PhysicalSize::from_logical(*self, scale_factor)
    }

    pub(crate) fn to_euclid(self) -> crate::lengths::LogicalSize {
        [self.width as _, self.height as _].into()
    }

    pub(crate) fn from_euclid(p: crate::lengths::LogicalSize) -> Self {
        Self::new(p.width as _, p.height as _)
    }
}

/// A size represented in the coordinate space of physical device pixels. That is the space after applying
/// a display device specific scale factor to pixels from the logical coordinate space.
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
pub struct PhysicalSize {
    /// The width in physical pixels.
    pub width: u32,
    /// The height in physical pixels;
    pub height: u32,
}

impl PhysicalSize {
    /// Construct a new physical size from the width and height values, that are assumed to be
    /// in the physical coordinate space.
    pub const fn new(width: u32, height: u32) -> Self {
        Self { width, height }
    }

    /// Convert a given logical size to a physical size by multiplying width and height with the
    /// specified scale factor.
    pub fn from_logical(logical_size: LogicalSize, scale_factor: f32) -> Self {
        Self::new(
            (logical_size.width * scale_factor) as u32,
            (logical_size.height * scale_factor) as u32,
        )
    }

    /// Convert this physical size to a logical size by dividing width and height by the
    /// specified scale factor.
    pub fn to_logical(&self, scale_factor: f32) -> LogicalSize {
        LogicalSize::from_physical(*self, scale_factor)
    }

    #[cfg(feature = "ffi")]
    pub(crate) fn to_euclid(&self) -> crate::graphics::euclid::default::Size2D<u32> {
        [self.width, self.height].into()
    }
}

/// The size of a window represented in either physical or logical pixels. This is used
/// with [`Window::set_size`].
#[derive(Clone, Debug, derive_more::From, PartialEq)]
pub enum WindowSize {
    /// The size in physical pixels.
    Physical(PhysicalSize),
    /// The size in logical screen pixels.
    Logical(LogicalSize),
}

impl WindowSize {
    /// Turn the `WindowSize` into a `PhysicalSize`.
    pub fn to_physical(&self, scale_factor: f32) -> PhysicalSize {
        match self {
            WindowSize::Physical(size) => *size,
            WindowSize::Logical(size) => size.to_physical(scale_factor),
        }
    }

    /// Turn the `WindowSize` into a `LogicalSize`.
    pub fn to_logical(&self, scale_factor: f32) -> LogicalSize {
        match self {
            WindowSize::Physical(size) => size.to_logical(scale_factor),
            WindowSize::Logical(size) => *size,
        }
    }
}

#[test]
fn logical_physical_pos() {
    use crate::graphics::euclid::approxeq::ApproxEq;

    let phys = PhysicalPosition::new(100, 50);
    let logical = phys.to_logical(2.);
    assert!(logical.x.approx_eq(&50.));
    assert!(logical.y.approx_eq(&25.));

    assert_eq!(logical.to_physical(2.), phys);
}

#[test]
fn logical_physical_size() {
    use crate::graphics::euclid::approxeq::ApproxEq;

    let phys = PhysicalSize::new(100, 50);
    let logical = phys.to_logical(2.);
    assert!(logical.width.approx_eq(&50.));
    assert!(logical.height.approx_eq(&25.));

    assert_eq!(logical.to_physical(2.), phys);
}

/// This enum describes a low-level access to specific graphics APIs used
/// by the renderer.
#[derive(Clone)]
#[non_exhaustive]
pub enum GraphicsAPI<'a> {
    /// The rendering is done using OpenGL.
    NativeOpenGL {
        /// Use this function pointer to obtain access to the OpenGL implementation - similar to `eglGetProcAddress`.
        get_proc_address: &'a dyn Fn(&core::ffi::CStr) -> *const core::ffi::c_void,
    },
    /// The rendering is done on a HTML Canvas element using WebGL.
    WebGL {
        /// The DOM element id of the HTML Canvas element used for rendering.
        canvas_element_id: &'a str,
        /// The drawing context type used on the HTML Canvas element for rendering. This is the argument to the
        /// `getContext` function on the HTML Canvas element.
        context_type: &'a str,
    },
}

impl<'a> core::fmt::Debug for GraphicsAPI<'a> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            GraphicsAPI::NativeOpenGL { .. } => write!(f, "GraphicsAPI::NativeOpenGL"),
            GraphicsAPI::WebGL { context_type, .. } => {
                write!(f, "GraphicsAPI::WebGL(context_type = {})", context_type)
            }
        }
    }
}

/// This enum describes the different rendering states, that will be provided
/// to the parameter of the callback for `set_rendering_notifier` on the `slint::Window`.
#[derive(Debug, Clone)]
#[repr(u8)]
#[non_exhaustive]
pub enum RenderingState {
    /// The window has been created and the graphics adapter/context initialized. When OpenGL
    /// is used for rendering, the context will be current.
    RenderingSetup,
    /// The scene of items is about to be rendered.  When OpenGL
    /// is used for rendering, the context will be current.
    BeforeRendering,
    /// The scene of items was rendered, but the back buffer was not sent for display presentation
    /// yet (for example GL swap buffers). When OpenGL is used for rendering, the context will be current.
    AfterRendering,
    /// The window will be destroyed and/or graphics resources need to be released due to other
    /// constraints.
    RenderingTeardown,
}

/// Internal trait that's used to map rendering state callbacks to either a Rust-API provided
/// impl FnMut or a struct that invokes a C callback and implements Drop to release the closure
/// on the C++ side.
pub trait RenderingNotifier {
    /// Called to notify that rendering has reached a certain state.
    fn notify(&mut self, state: RenderingState, graphics_api: &GraphicsAPI);
}

impl<F: FnMut(RenderingState, &GraphicsAPI)> RenderingNotifier for F {
    fn notify(&mut self, state: RenderingState, graphics_api: &GraphicsAPI) {
        self(state, graphics_api)
    }
}

/// This enum describes the different error scenarios that may occur when the application
/// registers a rendering notifier on a `slint::Window`.
#[derive(Debug, Clone)]
#[repr(u8)]
#[non_exhaustive]
pub enum SetRenderingNotifierError {
    /// The rendering backend does not support rendering notifiers.
    Unsupported,
    /// There is already a rendering notifier set, multiple notifiers are not supported.
    AlreadySet,
}

/// This type represents a window towards the windowing system, that's used to render the
/// scene of a component. It provides API to control windowing system specific aspects such
/// as the position on the screen.
#[repr(transparent)]
pub struct Window(pub(crate) WindowInner);

/// This enum describes whether a Window is allowed to be hidden when the user tries to close the window.
/// It is the return type of the callback provided to [Window::on_close_requested].
#[derive(Copy, Clone, Debug, PartialEq, Default)]
#[repr(u8)]
pub enum CloseRequestResponse {
    /// The Window will be hidden (default action)
    #[default]
    HideWindow = 0,
    /// The close request is rejected and the window will be kept shown.
    KeepWindowShown = 1,
}

impl Window {
    /// Create a new window from a window adapter
    ///
    /// You only need to create the window yourself when you create a [`WindowAdapter`] from
    /// [`Platform::create_window_adapter`](crate::platform::Platform::create_window_adapter)
    ///
    /// Since the window adapter must own the Window, this function is meant to be used with
    /// [`Rc::new_cyclic`](alloc::rc::Rc::new_cyclic)
    ///
    /// # Example
    /// ```rust
    /// use std::rc::Rc;
    /// use slint::platform::{WindowAdapter, Renderer};
    /// use slint::{Window, PhysicalSize};
    /// struct MyWindowAdapter {
    ///     window: Window,
    ///     //...
    /// }
    /// impl WindowAdapter for MyWindowAdapter {
    ///    fn window(&self) -> &Window { &self.window }
    ///    fn size(&self) -> PhysicalSize { unimplemented!() }
    ///    fn renderer(&self) -> &dyn Renderer { unimplemented!() }
    /// }
    ///
    /// fn create_window_adapter() -> Rc<dyn WindowAdapter> {
    ///    Rc::<MyWindowAdapter>::new_cyclic(|weak| {
    ///        MyWindowAdapter {
    ///           window: Window::new(weak.clone()),
    ///           //...
    ///        }
    ///    })
    /// }
    /// ```
    pub fn new(window_adapter_weak: alloc::rc::Weak<dyn WindowAdapter>) -> Self {
        Self(WindowInner::new(window_adapter_weak))
    }

    /// Shows the window on the screen. An additional strong reference on the
    /// associated component is maintained while the window is visible.
    ///
    /// Call [`Self::hide()`] to make the window invisible again, and drop the additional
    /// strong reference.
    pub fn show(&self) -> Result<(), PlatformError> {
        self.0.show()
    }

    /// Hides the window, so that it is not visible anymore. The additional strong
    /// reference on the associated component, that was created when [`Self::show()`] was called, is
    /// dropped.
    pub fn hide(&self) -> Result<(), PlatformError> {
        self.0.hide()
    }

    /// This function allows registering a callback that's invoked during the different phases of
    /// rendering. This allows custom rendering on top or below of the scene.
    pub fn set_rendering_notifier(
        &self,
        callback: impl FnMut(RenderingState, &GraphicsAPI) + 'static,
    ) -> Result<(), SetRenderingNotifierError> {
        self.0.window_adapter().renderer().set_rendering_notifier(Box::new(callback))
    }

    /// This function allows registering a callback that's invoked when the user tries to close a window.
    /// The callback has to return a [CloseRequestResponse].
    pub fn on_close_requested(&self, callback: impl FnMut() -> CloseRequestResponse + 'static) {
        self.0.on_close_requested(callback);
    }

    /// This function issues a request to the windowing system to redraw the contents of the window.
    pub fn request_redraw(&self) {
        self.0.window_adapter().request_redraw()
    }

    /// This function returns the scale factor that allows converting between logical and
    /// physical pixels.
    pub fn scale_factor(&self) -> f32 {
        self.0.scale_factor()
    }

    /// Returns the position of the window on the screen, in physical screen coordinates and including
    /// a window frame (if present).
    pub fn position(&self) -> PhysicalPosition {
        self.0.window_adapter().position().unwrap_or_default()
    }

    /// Sets the position of the window on the screen, in physical screen coordinates and including
    /// a window frame (if present).
    /// Note that on some windowing systems, such as Wayland, this functionality is not available.
    pub fn set_position(&self, position: impl Into<WindowPosition>) {
        let position = position.into();
        self.0.window_adapter().set_position(position)
    }

    /// Returns the size of the window on the screen, in physical screen coordinates and excluding
    /// a window frame (if present).
    pub fn size(&self) -> PhysicalSize {
        self.0.window_adapter().size()
    }

    /// Resizes the window to the specified size on the screen, in physical pixels and excluding
    /// a window frame (if present).
    pub fn set_size(&self, size: impl Into<WindowSize>) {
        let size = size.into();
        crate::window::WindowAdapter::set_size(&*self.0.window_adapter(), size);
    }

    /// Returns if the window is currently fullscreen
    pub fn is_fullscreen(&self) -> bool {
        self.0.is_fullscreen()
    }

    /// Set or unset the window to display fullscreen.
    pub fn set_fullscreen(&self, fullscreen: bool) {
        self.0.set_fullscreen(fullscreen);
    }

    /// Returns if the window is currently maximized
    pub fn is_maximized(&self) -> bool {
        self.0.is_maximized()
    }

    /// Maximize or unmaximize the window.
    pub fn set_maximized(&self, maximized: bool) {
        self.0.set_maximized(maximized);
    }

    /// Returns if the window is currently minimized
    pub fn is_minimized(&self) -> bool {
        self.0.is_minimized()
    }

    /// Minimize or unminimze the window.
    pub fn set_minimized(&self, minimized: bool) {
        self.0.set_minimized(minimized);
    }

    /// Dispatch a window event to the scene.
    ///
    /// Use this when you're implementing your own backend and want to forward user input events.
    ///
    /// Any position fields in the event must be in the logical pixel coordinate system relative to
    /// the top left corner of the window.
    // TODO: Return a Result<(), PlatformError>
    pub fn dispatch_event(&self, event: crate::platform::WindowEvent) {
        match event {
            crate::platform::WindowEvent::PointerPressed { position, button } => {
                self.0.process_mouse_input(MouseEvent::Pressed {
                    position: position.to_euclid().cast(),
                    button,
                    click_count: 0,
                });
            }
            crate::platform::WindowEvent::PointerReleased { position, button } => {
                self.0.process_mouse_input(MouseEvent::Released {
                    position: position.to_euclid().cast(),
                    button,
                    click_count: 0,
                });
            }
            crate::platform::WindowEvent::PointerMoved { position } => {
                self.0.process_mouse_input(MouseEvent::Moved {
                    position: position.to_euclid().cast(),
                });
            }
            crate::platform::WindowEvent::PointerScrolled { position, delta_x, delta_y } => {
                self.0.process_mouse_input(MouseEvent::Wheel {
                    position: position.to_euclid().cast(),
                    delta_x: delta_x as _,
                    delta_y: delta_y as _,
                });
            }
            crate::platform::WindowEvent::PointerExited => {
                self.0.process_mouse_input(MouseEvent::Exit)
            }

            crate::platform::WindowEvent::KeyPressed { text } => {
                self.0.process_key_input(crate::input::KeyEvent {
                    text,
                    repeat: false,
                    event_type: KeyEventType::KeyPressed,
                    ..Default::default()
                })
            }
            crate::platform::WindowEvent::KeyPressRepeated { text } => {
                self.0.process_key_input(crate::input::KeyEvent {
                    text,
                    repeat: true,
                    event_type: KeyEventType::KeyPressed,
                    ..Default::default()
                })
            }
            crate::platform::WindowEvent::KeyReleased { text } => {
                self.0.process_key_input(crate::input::KeyEvent {
                    text,
                    event_type: KeyEventType::KeyReleased,
                    ..Default::default()
                })
            }
            crate::platform::WindowEvent::ScaleFactorChanged { scale_factor } => {
                self.0.set_scale_factor(scale_factor);
            }
            crate::platform::WindowEvent::Resized { size } => {
                self.0.set_window_item_geometry(size.to_euclid());
                self.0
                    .window_adapter()
                    .renderer()
                    .resize(size.to_physical(self.scale_factor()))
                    .unwrap()
            }
            crate::platform::WindowEvent::CloseRequested => {
                if self.0.request_close() {
                    self.hide().unwrap();
                }
            }
            crate::platform::WindowEvent::WindowActiveChanged(bool) => self.0.set_active(bool),
        }
    }

    /// Returns true if there is an animation currently active on any property in the Window; false otherwise.
    pub fn has_active_animations(&self) -> bool {
        // TODO make it really per window.
        crate::animations::CURRENT_ANIMATION_DRIVER.with(|driver| driver.has_active_animations())
    }

    /// Returns the visibility state of the window. This function can return false even if you previously called show()
    /// on it, for example if the user minimized the window.
    pub fn is_visible(&self) -> bool {
        self.0.is_visible()
    }
}

pub use crate::SharedString;

/// This trait is used to obtain references to global singletons exported in `.slint`
/// markup. Alternatively, you can use [`ComponentHandle::global`] to obtain access.
///
/// This trait is implemented by the compiler for each global singleton that's exported.
///
/// # Example
/// The following example of `.slint` markup defines a global singleton called `Palette`, exports
/// it and modifies it from Rust code:
/// ```rust
/// # i_slint_backend_testing::init();
/// slint::slint!{
/// export global Palette {
///     in property<color> foreground-color;
///     in property<color> background-color;
/// }
///
/// export component App inherits Window {
///    background: Palette.background-color;
///    Text {
///       text: "Hello";
///       color: Palette.foreground-color;
///    }
///    // ...
/// }
/// }
/// let app = App::new().unwrap();
/// app.global::<Palette>().set_background_color(slint::Color::from_rgb_u8(0, 0, 0));
///
/// // alternate way to access the global singleton:
/// Palette::get(&app).set_foreground_color(slint::Color::from_rgb_u8(255, 255, 255));
/// ```
///
#[doc = concat!("See also the [language documentation for global singletons](https://slint.dev/releases/", env!("CARGO_PKG_VERSION"), "/docs/slint/src/reference/globals.html) for more information.")]
///
/// **Note:** Only globals that are exported or re-exported from the main .slint file will
/// be exposed in the API
pub trait Global<'a, Component> {
    /// Returns a reference that's tied to the life time of the provided component.
    fn get(component: &'a Component) -> Self;
}

/// This trait describes the common public API of a strongly referenced Slint component.
/// It allows creating strongly-referenced clones, a conversion into/ a weak pointer as well
/// as other convenience functions.
///
/// This trait is implemented by the [generated component](index.html#generated-components)
pub trait ComponentHandle {
    /// The type of the generated component.
    #[doc(hidden)]
    type Inner;
    /// Returns a new weak pointer.
    fn as_weak(&self) -> Weak<Self>
    where
        Self: Sized;

    /// Returns a clone of this handle that's a strong reference.
    #[must_use]
    fn clone_strong(&self) -> Self;

    /// Internal function used when upgrading a weak reference to a strong one.
    #[doc(hidden)]
    fn from_inner(_: vtable::VRc<ItemTreeVTable, Self::Inner>) -> Self;

    /// Convenience function for [`crate::Window::show()`](struct.Window.html#method.show).
    /// This shows the window on the screen and maintains an extra strong reference while
    /// the window is visible. To react to events from the windowing system, such as draw
    /// requests or mouse/touch input, it is still necessary to spin the event loop,
    /// using [`crate::run_event_loop`](fn.run_event_loop.html).
    fn show(&self) -> Result<(), PlatformError>;

    /// Convenience function for [`crate::Window::hide()`](struct.Window.html#method.hide).
    /// Hides the window, so that it is not visible anymore. The additional strong reference
    /// on the associated component, that was created when show() was called, is dropped.
    fn hide(&self) -> Result<(), PlatformError>;

    /// Returns the Window associated with this component. The window API can be used
    /// to control different aspects of the integration into the windowing system,
    /// such as the position on the screen.
    fn window(&self) -> &Window;

    /// This is a convenience function that first calls [`Self::show`], followed by [`crate::run_event_loop()`](fn.run_event_loop.html)
    /// and [`Self::hide`].
    fn run(&self) -> Result<(), PlatformError>;

    /// This function provides access to instances of global singletons exported in `.slint`.
    /// See [`Global`] for an example how to export and access globals from `.slint` markup.
    fn global<'a, T: Global<'a, Self>>(&'a self) -> T
    where
        Self: Sized;
}

mod weak_handle {

    use super::*;

    /// Struct that's used to hold weak references of a [Slint component](index.html#generated-components)
    ///
    /// In order to create a Weak, you should use [`ComponentHandle::as_weak`].
    ///
    /// Strong references should not be captured by the functions given to a lambda,
    /// as this would produce a reference loop and leak the component.
    /// Instead, the callback function should capture a weak component.
    ///
    /// The Weak component also implement `Send` and can be send to another thread.
    /// but the upgrade function will only return a valid component from the same thread
    /// as the one it has been created from.
    /// This is useful to use with [`invoke_from_event_loop()`] or [`Self::upgrade_in_event_loop()`].
    pub struct Weak<T: ComponentHandle> {
        inner: vtable::VWeak<ItemTreeVTable, T::Inner>,
        #[cfg(feature = "std")]
        thread: std::thread::ThreadId,
    }

    impl<T: ComponentHandle> Default for Weak<T> {
        fn default() -> Self {
            Self {
                inner: vtable::VWeak::default(),
                #[cfg(feature = "std")]
                thread: std::thread::current().id(),
            }
        }
    }

    impl<T: ComponentHandle> Clone for Weak<T> {
        fn clone(&self) -> Self {
            Self {
                inner: self.inner.clone(),
                #[cfg(feature = "std")]
                thread: self.thread,
            }
        }
    }

    impl<T: ComponentHandle> Weak<T> {
        #[doc(hidden)]
        pub fn new(rc: &vtable::VRc<ItemTreeVTable, T::Inner>) -> Self {
            Self {
                inner: vtable::VRc::downgrade(rc),
                #[cfg(feature = "std")]
                thread: std::thread::current().id(),
            }
        }

        /// Returns a new strongly referenced component if some other instance still
        /// holds a strong reference. Otherwise, returns None.
        ///
        /// This also returns None if the current thread is not the thread that created
        /// the component
        pub fn upgrade(&self) -> Option<T>
        where
            T: ComponentHandle,
        {
            #[cfg(feature = "std")]
            if std::thread::current().id() != self.thread {
                return None;
            }
            self.inner.upgrade().map(T::from_inner)
        }

        /// Convenience function that returns a new strongly referenced component if
        /// some other instance still holds a strong reference and the current thread
        /// is the thread that created this component.
        /// Otherwise, this function panics.
        #[track_caller]
        pub fn unwrap(&self) -> T {
            #[cfg(feature = "std")]
            if std::thread::current().id() != self.thread {
                panic!(
                    "Trying to upgrade a Weak from a different thread than the one it belongs to"
                );
            }
            T::from_inner(self.inner.upgrade().expect("The Weak doesn't hold a valid component"))
        }

        /// A helper function to allow creation on `component_factory::Component` from
        /// a `ComponentHandle`
        pub(crate) fn inner(&self) -> vtable::VWeak<ItemTreeVTable, T::Inner> {
            self.inner.clone()
        }

        /// Convenience function that combines [`invoke_from_event_loop()`] with [`Self::upgrade()`]
        ///
        /// The given functor will be added to an internal queue and will wake the event loop.
        /// On the next iteration of the event loop, the functor will be executed with a `T` as an argument.
        ///
        /// If the component was dropped because there are no more strong reference to the component,
        /// the functor will not be called.
        ///
        /// # Example
        /// ```rust
        /// # i_slint_backend_testing::init();
        /// slint::slint! { export component MyApp inherits Window { in property <int> foo; /* ... */ } }
        /// let handle = MyApp::new().unwrap();
        /// let handle_weak = handle.as_weak();
        /// let thread = std::thread::spawn(move || {
        ///     // ... Do some computation in the thread
        ///     let foo = 42;
        ///     # assert!(handle_weak.upgrade().is_none()); // note that upgrade fails in a thread
        ///     # return; // don't upgrade_in_event_loop in our examples
        ///     // now forward the data to the main thread using upgrade_in_event_loop
        ///     handle_weak.upgrade_in_event_loop(move |handle| handle.set_foo(foo));
        /// });
        /// # thread.join().unwrap(); return; // don't run the event loop in examples
        /// handle.run().unwrap();
        /// ```
        #[cfg(any(feature = "std", feature = "unsafe-single-threaded"))]
        pub fn upgrade_in_event_loop(
            &self,
            func: impl FnOnce(T) + Send + 'static,
        ) -> Result<(), EventLoopError>
        where
            T: 'static,
        {
            let weak_handle = self.clone();
            super::invoke_from_event_loop(move || {
                if let Some(h) = weak_handle.upgrade() {
                    func(h);
                }
            })
        }
    }

    // Safety: we make sure in upgrade that the thread is the proper one,
    // and the VWeak only use atomic pointer so it is safe to clone and drop in another thread
    #[allow(unsafe_code)]
    #[cfg(any(feature = "std", feature = "unsafe-single-threaded"))]
    unsafe impl<T: ComponentHandle> Send for Weak<T> {}
}

pub use weak_handle::*;

/// Adds the specified function to an internal queue, notifies the event loop to wake up.
/// Once woken up, any queued up functors will be invoked.
///
/// This function is thread-safe and can be called from any thread, including the one
/// running the event loop. The provided functors will only be invoked from the thread
/// that started the event loop.
///
/// You can use this to set properties or use any other Slint APIs from other threads,
/// by collecting the code in a functor and queuing it up for invocation within the event loop.
///
/// See also [`Weak::upgrade_in_event_loop`]
///
/// # Example
/// ```rust
/// slint::slint! { export component MyApp inherits Window { in property <int> foo; /* ... */ } }
/// # i_slint_backend_testing::init();
/// let handle = MyApp::new().unwrap();
/// let handle_weak = handle.as_weak();
/// # return; // don't run the event loop in examples
/// let thread = std::thread::spawn(move || {
///     // ... Do some computation in the thread
///     let foo = 42;
///      // now forward the data to the main thread using invoke_from_event_loop
///     let handle_copy = handle_weak.clone();
///     slint::invoke_from_event_loop(move || handle_copy.unwrap().set_foo(foo));
/// });
/// handle.run().unwrap();
/// ```
pub fn invoke_from_event_loop(func: impl FnOnce() + Send + 'static) -> Result<(), EventLoopError> {
    crate::platform::event_loop_proxy()
        .ok_or(EventLoopError::NoEventLoopProvider)?
        .invoke_from_event_loop(alloc::boxed::Box::new(func))
}

/// Schedules the main event loop for termination. This function is meant
/// to be called from callbacks triggered by the UI. After calling the function,
/// it will return immediately and once control is passed back to the event loop,
/// the initial call to `slint::run_event_loop()` will return.
///
/// This function can be called from any thread
pub fn quit_event_loop() -> Result<(), EventLoopError> {
    crate::platform::event_loop_proxy()
        .ok_or(EventLoopError::NoEventLoopProvider)?
        .quit_event_loop()
}

#[derive(Debug, Clone, Eq, PartialEq)]
#[non_exhaustive]
/// Error returned from the [`invoke_from_event_loop()`] and [`quit_event_loop()`] function
pub enum EventLoopError {
    /// The event could not be sent because the event loop was terminated already
    EventLoopTerminated,
    /// The event could not be sent because the Slint platform abstraction was not yet initialized,
    /// or the platform does not support event loop.
    NoEventLoopProvider,
}

impl core::fmt::Display for EventLoopError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            EventLoopError::EventLoopTerminated => {
                f.write_str("The event loop was already terminated")
            }
            EventLoopError::NoEventLoopProvider => {
                f.write_str("The Slint platform does not provide an event loop")
            }
        }
    }
}

/// The platform encountered a fatal error.
///
/// This error typically indicates an issue with initialization or connecting to the windowing system.
///
/// This can be constructed from a `String`:
/// ```rust
/// use slint::platform::PlatformError;
/// PlatformError::from(format!("Could not load resource {}", 1234));
/// ```
#[derive(Debug)]
#[non_exhaustive]
pub enum PlatformError {
    /// No default platform was selected, or no platform could be initialized.
    ///
    /// If you encounter this error, make sure to either selected trough the `backend-*` cargo features flags,
    /// or call [`platform::set_platform()`](crate::platform::set_platform)
    /// before running the event loop
    NoPlatform,
    /// The Slint Platform does not provide an event loop.
    ///
    /// The [`Platform::run_event_loop`](crate::platform::Platform::run_event_loop)
    /// is not implemented for the current platform.
    NoEventLoopProvider,

    /// There is already a platform set from another thread.
    SetPlatformError(crate::platform::SetPlatformError),

    /// Another platform-specific error occurred
    Other(String),
    /// Another platform-specific error occurred.
    #[cfg(feature = "std")]
    OtherError(Box<dyn std::error::Error + Send + Sync>),
}

impl core::fmt::Display for PlatformError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            PlatformError::NoPlatform => f.write_str(
                "No default Slint platform was selected, and no Slint platform was initialized",
            ),
            PlatformError::NoEventLoopProvider => {
                f.write_str("The Slint platform does not provide an event loop")
            }
            PlatformError::SetPlatformError(_) => {
                f.write_str("The Slint platform was initialized in another thread")
            }
            PlatformError::Other(str) => f.write_str(str),
            #[cfg(feature = "std")]
            PlatformError::OtherError(error) => error.fmt(f),
        }
    }
}

impl From<String> for PlatformError {
    fn from(value: String) -> Self {
        Self::Other(value)
    }
}
impl From<&str> for PlatformError {
    fn from(value: &str) -> Self {
        Self::Other(value.into())
    }
}

#[cfg(feature = "std")]
impl From<Box<dyn std::error::Error + Send + Sync>> for PlatformError {
    fn from(error: Box<dyn std::error::Error + Send + Sync>) -> Self {
        Self::OtherError(error)
    }
}

#[cfg(feature = "std")]
impl std::error::Error for PlatformError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        match self {
            PlatformError::OtherError(err) => Some(err.as_ref()),
            _ => None,
        }
    }
}

#[test]
#[cfg(feature = "std")]
fn error_is_send() {
    let _: Box<dyn std::error::Error + Send + Sync + 'static> = PlatformError::NoPlatform.into();
}