1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
use std::ffi::c_void;
use std::future::Future;
use std::pin::Pin;
use std::ptr;
use std::sync::{
    atomic::{AtomicBool, Ordering},
    Arc, Mutex, Weak,
};
use std::task::{Context, Poll};

use futures_util::stream::{FuturesUnordered, Stream};
use libc::c_int;

use super::error::hyper_code;
use super::UserDataPointer;

type BoxFuture<T> = Pin<Box<dyn Future<Output = T> + Send>>;
type BoxAny = Box<dyn AsTaskType + Send + Sync>;

/// Return in a poll function to indicate it was ready.
pub const HYPER_POLL_READY: c_int = 0;
/// Return in a poll function to indicate it is still pending.
///
/// The passed in `hyper_waker` should be registered to wake up the task at
/// some later point.
pub const HYPER_POLL_PENDING: c_int = 1;
/// Return in a poll function indicate an error.
pub const HYPER_POLL_ERROR: c_int = 3;

/// A task executor for `hyper_task`s.
pub struct hyper_executor {
    /// The executor of all task futures.
    ///
    /// There should never be contention on the mutex, as it is only locked
    /// to drive the futures. However, we cannot gaurantee proper usage from
    /// `hyper_executor_poll()`, which in C could potentially be called inside
    /// one of the stored futures. The mutex isn't re-entrant, so doing so
    /// would result in a deadlock, but that's better than data corruption.
    driver: Mutex<FuturesUnordered<TaskFuture>>,

    /// The queue of futures that need to be pushed into the `driver`.
    ///
    /// This is has a separate mutex since `spawn` could be called from inside
    /// a future, which would mean the driver's mutex is already locked.
    spawn_queue: Mutex<Vec<TaskFuture>>,

    /// This is used to track when a future calls `wake` while we are within
    /// `hyper_executor::poll_next`.
    is_woken: Arc<ExecWaker>,
}

#[derive(Clone)]
pub(crate) struct WeakExec(Weak<hyper_executor>);

struct ExecWaker(AtomicBool);

/// An async task.
pub struct hyper_task {
    future: BoxFuture<BoxAny>,
    output: Option<BoxAny>,
    userdata: UserDataPointer,
}

struct TaskFuture {
    task: Option<Box<hyper_task>>,
}

/// An async context for a task that contains the related waker.
pub struct hyper_context<'a>(Context<'a>);

/// A waker that is saved and used to waken a pending task.
pub struct hyper_waker {
    waker: std::task::Waker,
}

/// A descriptor for what type a `hyper_task` value is.
#[repr(C)]
pub enum hyper_task_return_type {
    /// The value of this task is null (does not imply an error).
    HYPER_TASK_EMPTY,
    /// The value of this task is `hyper_error *`.
    HYPER_TASK_ERROR,
    /// The value of this task is `hyper_clientconn *`.
    HYPER_TASK_CLIENTCONN,
    /// The value of this task is `hyper_response *`.
    HYPER_TASK_RESPONSE,
    /// The value of this task is `hyper_buf *`.
    HYPER_TASK_BUF,
}

pub(crate) unsafe trait AsTaskType {
    fn as_task_type(&self) -> hyper_task_return_type;
}

pub(crate) trait IntoDynTaskType {
    fn into_dyn_task_type(self) -> BoxAny;
}

// ===== impl hyper_executor =====

impl hyper_executor {
    fn new() -> Arc<hyper_executor> {
        Arc::new(hyper_executor {
            driver: Mutex::new(FuturesUnordered::new()),
            spawn_queue: Mutex::new(Vec::new()),
            is_woken: Arc::new(ExecWaker(AtomicBool::new(false))),
        })
    }

    pub(crate) fn downgrade(exec: &Arc<hyper_executor>) -> WeakExec {
        WeakExec(Arc::downgrade(exec))
    }

    fn spawn(&self, task: Box<hyper_task>) {
        self.spawn_queue
            .lock()
            .unwrap()
            .push(TaskFuture { task: Some(task) });
    }

    fn poll_next(&self) -> Option<Box<hyper_task>> {
        // Drain the queue first.
        self.drain_queue();

        let waker = futures_util::task::waker_ref(&self.is_woken);
        let mut cx = Context::from_waker(&waker);

        loop {
            match Pin::new(&mut *self.driver.lock().unwrap()).poll_next(&mut cx) {
                Poll::Ready(val) => return val,
                Poll::Pending => {
                    // Check if any of the pending tasks tried to spawn
                    // some new tasks. If so, drain into the driver and loop.
                    if self.drain_queue() {
                        continue;
                    }

                    // If the driver called `wake` while we were polling,
                    // we should poll again immediately!
                    if self.is_woken.0.swap(false, Ordering::SeqCst) {
                        continue;
                    }

                    return None;
                }
            }
        }
    }

    fn drain_queue(&self) -> bool {
        let mut queue = self.spawn_queue.lock().unwrap();
        if queue.is_empty() {
            return false;
        }

        let driver = self.driver.lock().unwrap();

        for task in queue.drain(..) {
            driver.push(task);
        }

        true
    }
}

impl futures_util::task::ArcWake for ExecWaker {
    fn wake_by_ref(me: &Arc<ExecWaker>) {
        me.0.store(true, Ordering::SeqCst);
    }
}

// ===== impl WeakExec =====

impl WeakExec {
    pub(crate) fn new() -> Self {
        WeakExec(Weak::new())
    }
}

impl crate::rt::Executor<BoxFuture<()>> for WeakExec {
    fn execute(&self, fut: BoxFuture<()>) {
        if let Some(exec) = self.0.upgrade() {
            exec.spawn(hyper_task::boxed(fut));
        }
    }
}

ffi_fn! {
    /// Creates a new task executor.
    fn hyper_executor_new() -> *const hyper_executor {
        Arc::into_raw(hyper_executor::new())
    } ?= ptr::null()
}

ffi_fn! {
    /// Frees an executor and any incomplete tasks still part of it.
    fn hyper_executor_free(exec: *const hyper_executor) {
        drop(unsafe { Arc::from_raw(exec) });
    }
}

ffi_fn! {
    /// Push a task onto the executor.
    ///
    /// The executor takes ownership of the task, it should not be accessed
    /// again unless returned back to the user with `hyper_executor_poll`.
    fn hyper_executor_push(exec: *const hyper_executor, task: *mut hyper_task) -> hyper_code {
        if exec.is_null() || task.is_null() {
            return hyper_code::HYPERE_INVALID_ARG;
        }
        let exec = unsafe { &*exec };
        let task = unsafe { Box::from_raw(task) };
        exec.spawn(task);
        hyper_code::HYPERE_OK
    }
}

ffi_fn! {
    /// Polls the executor, trying to make progress on any tasks that have notified
    /// that they are ready again.
    ///
    /// If ready, returns a task from the executor that has completed.
    ///
    /// If there are no ready tasks, this returns `NULL`.
    fn hyper_executor_poll(exec: *const hyper_executor) -> *mut hyper_task {
        // We only want an `&Arc` in here, so wrap in a `ManuallyDrop` so we
        // don't accidentally trigger a ref_dec of the Arc.
        let exec = unsafe { &*exec };
        match exec.poll_next() {
            Some(task) => Box::into_raw(task),
            None => ptr::null_mut(),
        }
    } ?= ptr::null_mut()
}

// ===== impl hyper_task =====

impl hyper_task {
    pub(crate) fn boxed<F>(fut: F) -> Box<hyper_task>
    where
        F: Future + Send + 'static,
        F::Output: IntoDynTaskType + Send + Sync + 'static,
    {
        Box::new(hyper_task {
            future: Box::pin(async move { fut.await.into_dyn_task_type() }),
            output: None,
            userdata: UserDataPointer(ptr::null_mut()),
        })
    }

    fn output_type(&self) -> hyper_task_return_type {
        match self.output {
            None => hyper_task_return_type::HYPER_TASK_EMPTY,
            Some(ref val) => val.as_task_type(),
        }
    }
}

impl Future for TaskFuture {
    type Output = Box<hyper_task>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        match Pin::new(&mut self.task.as_mut().unwrap().future).poll(cx) {
            Poll::Ready(val) => {
                let mut task = self.task.take().unwrap();
                task.output = Some(val);
                Poll::Ready(task)
            }
            Poll::Pending => Poll::Pending,
        }
    }
}

ffi_fn! {
    /// Free a task.
    fn hyper_task_free(task: *mut hyper_task) {
        drop(unsafe { Box::from_raw(task) });
    }
}

ffi_fn! {
    /// Takes the output value of this task.
    ///
    /// This must only be called once polling the task on an executor has finished
    /// this task.
    ///
    /// Use `hyper_task_type` to determine the type of the `void *` return value.
    fn hyper_task_value(task: *mut hyper_task) -> *mut c_void {
        if task.is_null() {
            return ptr::null_mut();
        }

        let task = unsafe { &mut *task };

        if let Some(val) = task.output.take() {
            let p = Box::into_raw(val) as *mut c_void;
            // protect from returning fake pointers to empty types
            if p == std::ptr::NonNull::<c_void>::dangling().as_ptr() {
                ptr::null_mut()
            } else {
                p
            }
        } else {
            ptr::null_mut()
        }
    } ?= ptr::null_mut()
}

ffi_fn! {
    /// Query the return type of this task.
    fn hyper_task_type(task: *mut hyper_task) -> hyper_task_return_type {
        if task.is_null() {
            // instead of blowing up spectacularly, just say this null task
            // doesn't have a value to retrieve.
            return hyper_task_return_type::HYPER_TASK_EMPTY;
        }

        unsafe { &*task }.output_type()
    }
}

ffi_fn! {
    /// Set a user data pointer to be associated with this task.
    ///
    /// This value will be passed to task callbacks, and can be checked later
    /// with `hyper_task_userdata`.
    fn hyper_task_set_userdata(task: *mut hyper_task, userdata: *mut c_void) {
        if task.is_null() {
            return;
        }

        unsafe { (*task).userdata = UserDataPointer(userdata) };
    }
}

ffi_fn! {
    /// Retrieve the userdata that has been set via `hyper_task_set_userdata`.
    fn hyper_task_userdata(task: *mut hyper_task) -> *mut c_void {
        if task.is_null() {
            return ptr::null_mut();
        }

        unsafe { &*task }.userdata.0
    } ?= ptr::null_mut()
}

// ===== impl AsTaskType =====

unsafe impl AsTaskType for () {
    fn as_task_type(&self) -> hyper_task_return_type {
        hyper_task_return_type::HYPER_TASK_EMPTY
    }
}

unsafe impl AsTaskType for crate::Error {
    fn as_task_type(&self) -> hyper_task_return_type {
        hyper_task_return_type::HYPER_TASK_ERROR
    }
}

impl<T> IntoDynTaskType for T
where
    T: AsTaskType + Send + Sync + 'static,
{
    fn into_dyn_task_type(self) -> BoxAny {
        Box::new(self)
    }
}

impl<T> IntoDynTaskType for crate::Result<T>
where
    T: IntoDynTaskType + Send + Sync + 'static,
{
    fn into_dyn_task_type(self) -> BoxAny {
        match self {
            Ok(val) => val.into_dyn_task_type(),
            Err(err) => Box::new(err),
        }
    }
}

impl<T> IntoDynTaskType for Option<T>
where
    T: IntoDynTaskType + Send + Sync + 'static,
{
    fn into_dyn_task_type(self) -> BoxAny {
        match self {
            Some(val) => val.into_dyn_task_type(),
            None => ().into_dyn_task_type(),
        }
    }
}

// ===== impl hyper_context =====

impl hyper_context<'_> {
    pub(crate) fn wrap<'a, 'b>(cx: &'a mut Context<'b>) -> &'a mut hyper_context<'b> {
        // A struct with only one field has the same layout as that field.
        unsafe { std::mem::transmute::<&mut Context<'_>, &mut hyper_context<'_>>(cx) }
    }
}

ffi_fn! {
    /// Copies a waker out of the task context.
    fn hyper_context_waker(cx: *mut hyper_context<'_>) -> *mut hyper_waker {
        let waker = unsafe { &mut *cx }.0.waker().clone();
        Box::into_raw(Box::new(hyper_waker { waker }))
    } ?= ptr::null_mut()
}

// ===== impl hyper_waker =====

ffi_fn! {
    /// Free a waker that hasn't been woken.
    fn hyper_waker_free(waker: *mut hyper_waker) {
        drop(unsafe { Box::from_raw(waker) });
    }
}

ffi_fn! {
    /// Free a waker that hasn't been woken.
    fn hyper_waker_wake(waker: *mut hyper_waker) {
        let waker = unsafe { Box::from_raw(waker) };
        waker.waker.wake();
    }
}