1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
//! HTTP Server
//!
//! A `Server` is created to listen on a port, parse HTTP requests, and hand
//! them off to a `Service`.
//!
//! There are two levels of APIs provide for constructing HTTP servers:
//!
//! - The higher-level [`Server`](Server) type.
//! - The lower-level [`conn`](conn) module.
//!
//! # Server
//!
//! The [`Server`](Server) is main way to start listening for HTTP requests.
//! It wraps a listener with a [`MakeService`](crate::service), and then should
//! be executed to start serving requests.
//!
//! [`Server`](Server) accepts connections in both HTTP1 and HTTP2 by default.
//!
//! ## Example
//!
//! ```no_run
//! use std::convert::Infallible;
//! use std::net::SocketAddr;
//! use hyper::{Body, Request, Response, Server};
//! use hyper::service::{make_service_fn, service_fn};
//!
//! async fn handle(_req: Request<Body>) -> Result<Response<Body>, Infallible> {
//!     Ok(Response::new(Body::from("Hello World")))
//! }
//!
//! # #[cfg(feature = "runtime")]
//! #[tokio::main]
//! async fn main() {
//!     // Construct our SocketAddr to listen on...
//!     let addr = SocketAddr::from(([127, 0, 0, 1], 3000));
//!
//!     // And a MakeService to handle each connection...
//!     let make_service = make_service_fn(|_conn| async {
//!         Ok::<_, Infallible>(service_fn(handle))
//!     });
//!
//!     // Then bind and serve...
//!     let server = Server::bind(&addr).serve(make_service);
//!
//!     // And run forever...
//!     if let Err(e) = server.await {
//!         eprintln!("server error: {}", e);
//!     }
//! }
//! # #[cfg(not(feature = "runtime"))]
//! # fn main() {}
//! ```

pub mod accept;
pub mod conn;
mod shutdown;
#[cfg(feature = "tcp")]
mod tcp;

use std::error::Error as StdError;
use std::fmt;
#[cfg(feature = "tcp")]
use std::net::{SocketAddr, TcpListener as StdTcpListener};

#[cfg(feature = "tcp")]
use std::time::Duration;

use pin_project::pin_project;
use tokio::io::{AsyncRead, AsyncWrite};

use self::accept::Accept;
use crate::body::{Body, Payload};
use crate::common::exec::{Exec, H2Exec, NewSvcExec};
use crate::common::{task, Future, Pin, Poll, Unpin};
use crate::service::{HttpService, MakeServiceRef};
// Renamed `Http` as `Http_` for now so that people upgrading don't see an
// error that `hyper::server::Http` is private...
use self::conn::{Http as Http_, NoopWatcher, SpawnAll};
use self::shutdown::{Graceful, GracefulWatcher};
#[cfg(feature = "tcp")]
use self::tcp::AddrIncoming;

/// A listening HTTP server that accepts connections in both HTTP1 and HTTP2 by default.
///
/// `Server` is a `Future` mapping a bound listener with a set of service
/// handlers. It is built using the [`Builder`](Builder), and the future
/// completes when the server has been shutdown. It should be run by an
/// `Executor`.
#[pin_project]
pub struct Server<I, S, E = Exec> {
    #[pin]
    spawn_all: SpawnAll<I, S, E>,
}

/// A builder for a [`Server`](Server).
#[derive(Debug)]
pub struct Builder<I, E = Exec> {
    incoming: I,
    protocol: Http_<E>,
}

// ===== impl Server =====

impl<I> Server<I, ()> {
    /// Starts a [`Builder`](Builder) with the provided incoming stream.
    pub fn builder(incoming: I) -> Builder<I> {
        Builder {
            incoming,
            protocol: Http_::new(),
        }
    }
}

#[cfg(feature = "tcp")]
impl Server<AddrIncoming, ()> {
    /// Binds to the provided address, and returns a [`Builder`](Builder).
    ///
    /// # Panics
    ///
    /// This method will panic if binding to the address fails. For a method
    /// to bind to an address and return a `Result`, see `Server::try_bind`.
    pub fn bind(addr: &SocketAddr) -> Builder<AddrIncoming> {
        let incoming = AddrIncoming::new(addr).unwrap_or_else(|e| {
            panic!("error binding to {}: {}", addr, e);
        });
        Server::builder(incoming)
    }

    /// Tries to bind to the provided address, and returns a [`Builder`](Builder).
    pub fn try_bind(addr: &SocketAddr) -> crate::Result<Builder<AddrIncoming>> {
        AddrIncoming::new(addr).map(Server::builder)
    }

    /// Create a new instance from a `std::net::TcpListener` instance.
    pub fn from_tcp(listener: StdTcpListener) -> Result<Builder<AddrIncoming>, crate::Error> {
        AddrIncoming::from_std(listener).map(Server::builder)
    }
}

#[cfg(feature = "tcp")]
impl<S, E> Server<AddrIncoming, S, E> {
    /// Returns the local address that this server is bound to.
    pub fn local_addr(&self) -> SocketAddr {
        self.spawn_all.local_addr()
    }
}

impl<I, IO, IE, S, E, B> Server<I, S, E>
where
    I: Accept<Conn = IO, Error = IE>,
    IE: Into<Box<dyn StdError + Send + Sync>>,
    IO: AsyncRead + AsyncWrite + Unpin + Send + 'static,
    S: MakeServiceRef<IO, Body, ResBody = B>,
    S::Error: Into<Box<dyn StdError + Send + Sync>>,
    B: Payload,
    E: H2Exec<<S::Service as HttpService<Body>>::Future, B>,
    E: NewSvcExec<IO, S::Future, S::Service, E, GracefulWatcher>,
{
    /// Prepares a server to handle graceful shutdown when the provided future
    /// completes.
    ///
    /// # Example
    ///
    /// ```
    /// # fn main() {}
    /// # #[cfg(feature = "tcp")]
    /// # async fn run() {
    /// # use hyper::{Body, Response, Server, Error};
    /// # use hyper::service::{make_service_fn, service_fn};
    /// # let make_service = make_service_fn(|_| async {
    /// #     Ok::<_, Error>(service_fn(|_req| async {
    /// #         Ok::<_, Error>(Response::new(Body::from("Hello World")))
    /// #     }))
    /// # });
    /// // Make a server from the previous examples...
    /// let server = Server::bind(&([127, 0, 0, 1], 3000).into())
    ///     .serve(make_service);
    ///
    /// // Prepare some signal for when the server should start shutting down...
    /// let (tx, rx) = tokio::sync::oneshot::channel::<()>();
    /// let graceful = server
    ///     .with_graceful_shutdown(async {
    ///         rx.await.ok();
    ///     });
    ///
    /// // Await the `server` receiving the signal...
    /// if let Err(e) = graceful.await {
    ///     eprintln!("server error: {}", e);
    /// }
    ///
    /// // And later, trigger the signal by calling `tx.send(())`.
    /// let _ = tx.send(());
    /// # }
    /// ```
    pub fn with_graceful_shutdown<F>(self, signal: F) -> Graceful<I, S, F, E>
    where
        F: Future<Output = ()>,
    {
        Graceful::new(self.spawn_all, signal)
    }
}

impl<I, IO, IE, S, B, E> Future for Server<I, S, E>
where
    I: Accept<Conn = IO, Error = IE>,
    IE: Into<Box<dyn StdError + Send + Sync>>,
    IO: AsyncRead + AsyncWrite + Unpin + Send + 'static,
    S: MakeServiceRef<IO, Body, ResBody = B>,
    S::Error: Into<Box<dyn StdError + Send + Sync>>,
    B: Payload,
    E: H2Exec<<S::Service as HttpService<Body>>::Future, B>,
    E: NewSvcExec<IO, S::Future, S::Service, E, NoopWatcher>,
{
    type Output = crate::Result<()>;

    fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Self::Output> {
        self.project().spawn_all.poll_watch(cx, &NoopWatcher)
    }
}

impl<I: fmt::Debug, S: fmt::Debug> fmt::Debug for Server<I, S> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Server")
            .field("listener", &self.spawn_all.incoming_ref())
            .finish()
    }
}

// ===== impl Builder =====

impl<I, E> Builder<I, E> {
    /// Start a new builder, wrapping an incoming stream and low-level options.
    ///
    /// For a more convenient constructor, see [`Server::bind`](Server::bind).
    pub fn new(incoming: I, protocol: Http_<E>) -> Self {
        Builder { incoming, protocol }
    }

    /// Sets whether to use keep-alive for HTTP/1 connections.
    ///
    /// Default is `true`.
    pub fn http1_keepalive(mut self, val: bool) -> Self {
        self.protocol.keep_alive(val);
        self
    }

    /// Set whether HTTP/1 connections should support half-closures.
    ///
    /// Clients can chose to shutdown their write-side while waiting
    /// for the server to respond. Setting this to `true` will
    /// prevent closing the connection immediately if `read`
    /// detects an EOF in the middle of a request.
    ///
    /// Default is `false`.
    pub fn http1_half_close(mut self, val: bool) -> Self {
        self.protocol.http1_half_close(val);
        self
    }

    /// Sets whether HTTP/1 is required.
    ///
    /// Default is `false`.
    pub fn http1_only(mut self, val: bool) -> Self {
        self.protocol.http1_only(val);
        self
    }

    // Sets whether to bunch up HTTP/1 writes until the read buffer is empty.
    //
    // This isn't really desirable in most cases, only really being useful in
    // silly pipeline benchmarks.
    #[doc(hidden)]
    pub fn http1_pipeline_flush(mut self, val: bool) -> Self {
        self.protocol.pipeline_flush(val);
        self
    }

    /// Set whether HTTP/1 connections should try to use vectored writes,
    /// or always flatten into a single buffer.
    ///
    /// # Note
    ///
    /// Setting this to `false` may mean more copies of body data,
    /// but may also improve performance when an IO transport doesn't
    /// support vectored writes well, such as most TLS implementations.
    ///
    /// Default is `true`.
    pub fn http1_writev(mut self, val: bool) -> Self {
        self.protocol.http1_writev(val);
        self
    }

    /// Sets whether HTTP/2 is required.
    ///
    /// Default is `false`.
    pub fn http2_only(mut self, val: bool) -> Self {
        self.protocol.http2_only(val);
        self
    }

    /// Sets the [`SETTINGS_INITIAL_WINDOW_SIZE`][spec] option for HTTP2
    /// stream-level flow control.
    ///
    /// Passing `None` will do nothing.
    ///
    /// If not set, hyper will use a default.
    ///
    /// [spec]: https://http2.github.io/http2-spec/#SETTINGS_INITIAL_WINDOW_SIZE
    pub fn http2_initial_stream_window_size(mut self, sz: impl Into<Option<u32>>) -> Self {
        self.protocol.http2_initial_stream_window_size(sz.into());
        self
    }

    /// Sets the max connection-level flow control for HTTP2
    ///
    /// Passing `None` will do nothing.
    ///
    /// If not set, hyper will use a default.
    pub fn http2_initial_connection_window_size(mut self, sz: impl Into<Option<u32>>) -> Self {
        self.protocol
            .http2_initial_connection_window_size(sz.into());
        self
    }

    /// Sets the [`SETTINGS_MAX_CONCURRENT_STREAMS`][spec] option for HTTP2
    /// connections.
    ///
    /// Default is no limit (`std::u32::MAX`). Passing `None` will do nothing.
    ///
    /// [spec]: https://http2.github.io/http2-spec/#SETTINGS_MAX_CONCURRENT_STREAMS
    pub fn http2_max_concurrent_streams(mut self, max: impl Into<Option<u32>>) -> Self {
        self.protocol.http2_max_concurrent_streams(max.into());
        self
    }

    /// Set the maximum buffer size.
    ///
    /// Default is ~ 400kb.
    pub fn http1_max_buf_size(mut self, val: usize) -> Self {
        self.protocol.max_buf_size(val);
        self
    }

    /// Sets the `Executor` to deal with connection tasks.
    ///
    /// Default is `tokio::spawn`.
    pub fn executor<E2>(self, executor: E2) -> Builder<I, E2> {
        Builder {
            incoming: self.incoming,
            protocol: self.protocol.with_executor(executor),
        }
    }

    /// Consume this `Builder`, creating a [`Server`](Server).
    ///
    /// # Example
    ///
    /// ```
    /// # #[cfg(feature = "tcp")]
    /// # async fn run() {
    /// use hyper::{Body, Error, Response, Server};
    /// use hyper::service::{make_service_fn, service_fn};
    ///
    /// // Construct our SocketAddr to listen on...
    /// let addr = ([127, 0, 0, 1], 3000).into();
    ///
    /// // And a MakeService to handle each connection...
    /// let make_svc = make_service_fn(|_| async {
    ///     Ok::<_, Error>(service_fn(|_req| async {
    ///         Ok::<_, Error>(Response::new(Body::from("Hello World")))
    ///     }))
    /// });
    ///
    /// // Then bind and serve...
    /// let server = Server::bind(&addr)
    ///     .serve(make_svc);
    ///
    /// // Run forever-ish...
    /// if let Err(err) = server.await {
    ///     eprintln!("server error: {}", err);
    /// }
    /// # }
    /// ```
    pub fn serve<S, B>(self, new_service: S) -> Server<I, S, E>
    where
        I: Accept,
        I::Error: Into<Box<dyn StdError + Send + Sync>>,
        I::Conn: AsyncRead + AsyncWrite + Unpin + Send + 'static,
        S: MakeServiceRef<I::Conn, Body, ResBody = B>,
        S::Error: Into<Box<dyn StdError + Send + Sync>>,
        B: Payload,
        E: NewSvcExec<I::Conn, S::Future, S::Service, E, NoopWatcher>,
        E: H2Exec<<S::Service as HttpService<Body>>::Future, B>,
    {
        let serve = self.protocol.serve(self.incoming, new_service);
        let spawn_all = serve.spawn_all();
        Server { spawn_all }
    }
}

#[cfg(feature = "tcp")]
impl<E> Builder<AddrIncoming, E> {
    /// Set whether TCP keepalive messages are enabled on accepted connections.
    ///
    /// If `None` is specified, keepalive is disabled, otherwise the duration
    /// specified will be the time to remain idle before sending TCP keepalive
    /// probes.
    pub fn tcp_keepalive(mut self, keepalive: Option<Duration>) -> Self {
        self.incoming.set_keepalive(keepalive);
        self
    }

    /// Set the value of `TCP_NODELAY` option for accepted connections.
    pub fn tcp_nodelay(mut self, enabled: bool) -> Self {
        self.incoming.set_nodelay(enabled);
        self
    }

    /// Set whether to sleep on accept errors.
    ///
    /// A possible scenario is that the process has hit the max open files
    /// allowed, and so trying to accept a new connection will fail with
    /// EMFILE. In some cases, it's preferable to just wait for some time, if
    /// the application will likely close some files (or connections), and try
    /// to accept the connection again. If this option is true, the error will
    /// be logged at the error level, since it is still a big deal, and then
    /// the listener will sleep for 1 second.
    ///
    /// In other cases, hitting the max open files should be treat similarly
    /// to being out-of-memory, and simply error (and shutdown). Setting this
    /// option to false will allow that.
    ///
    /// For more details see [`AddrIncoming::set_sleep_on_errors`]
    pub fn tcp_sleep_on_accept_errors(mut self, val: bool) -> Self {
        self.incoming.set_sleep_on_errors(val);
        self
    }
}