1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
//! Lower-level Server connection API.
//!
//! The types in this module are to provide a lower-level API based around a
//! single connection. Accepting a connection and binding it with a service
//! are not handled at this level. This module provides the building blocks to
//! customize those things externally.
//!
//! If you don't have need to manage connections yourself, consider using the
//! higher-level [Server](super) API.

use std::fmt;
use std::mem;
#[cfg(feature = "runtime")] use std::net::SocketAddr;
use std::sync::Arc;
#[cfg(feature = "runtime")] use std::time::Duration;

use bytes::Bytes;
use futures::{Async, Future, Poll, Stream};
use futures::future::{Either, Executor};
use tokio_io::{AsyncRead, AsyncWrite};
#[cfg(feature = "runtime")] use tokio_reactor::Handle;

use body::{Body, Payload};
use common::exec::{Exec, H2Exec, NewSvcExec};
use common::io::Rewind;
use error::{Kind, Parse};
use proto;
use service::{MakeServiceRef, Service};
use upgrade::Upgraded;

pub(super) use self::spawn_all::NoopWatcher;
use self::spawn_all::NewSvcTask;
pub(super) use self::spawn_all::Watcher;
pub(super) use self::upgrades::UpgradeableConnection;

#[cfg(feature = "runtime")] pub use super::tcp::{AddrIncoming, AddrStream};

/// A lower-level configuration of the HTTP protocol.
///
/// This structure is used to configure options for an HTTP server connection.
///
/// If you don't have need to manage connections yourself, consider using the
/// higher-level [Server](super) API.
#[derive(Clone, Debug)]
pub struct Http<E = Exec> {
    exec: E,
    h1_half_close: bool,
    h1_writev: bool,
    mode: ConnectionMode,
    keep_alive: bool,
    max_buf_size: Option<usize>,
    pipeline_flush: bool,
}

/// The internal mode of HTTP protocol which indicates the behavior when a parse error occurs.
#[derive(Clone, Debug, PartialEq)]
enum ConnectionMode {
    /// Always use HTTP/1 and do not upgrade when a parse error occurs.
    H1Only,
    /// Always use HTTP/2.
    H2Only,
    /// Use HTTP/1 and try to upgrade to h2 when a parse error occurs.
    Fallback,
}

/// A stream mapping incoming IOs to new services.
///
/// Yields `Connecting`s that are futures that should be put on a reactor.
#[must_use = "streams do nothing unless polled"]
#[derive(Debug)]
pub struct Serve<I, S, E = Exec> {
    incoming: I,
    make_service: S,
    protocol: Http<E>,
}

/// A future building a new `Service` to a `Connection`.
///
/// Wraps the future returned from `MakeService` into one that returns
/// a `Connection`.
#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
pub struct Connecting<I, F, E = Exec> {
    future: F,
    io: Option<I>,
    protocol: Http<E>,
}

#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
pub(super) struct SpawnAll<I, S, E> {
    pub(super) serve: Serve<I, S, E>,
}

/// A future binding a connection with a Service.
///
/// Polling this future will drive HTTP forward.
#[must_use = "futures do nothing unless polled"]
pub struct Connection<T, S, E = Exec>
where
    S: Service,
{
    pub(super) conn: Option<
        Either<
        proto::h1::Dispatcher<
            proto::h1::dispatch::Server<S>,
            S::ResBody,
            T,
            proto::ServerTransaction,
        >,
        proto::h2::Server<
            Rewind<T>,
            S,
            S::ResBody,
            E,
        >,
    >>,
    fallback: Fallback<E>,
}

#[derive(Clone, Debug)]
enum Fallback<E> {
    ToHttp2(E),
    Http1Only,
}

impl<E> Fallback<E> {
    fn to_h2(&self) -> bool {
        match *self {
            Fallback::ToHttp2(_) => true,
            Fallback::Http1Only => false,
        }
    }
}

/// Deconstructed parts of a `Connection`.
///
/// This allows taking apart a `Connection` at a later time, in order to
/// reclaim the IO object, and additional related pieces.
#[derive(Debug)]
pub struct Parts<T, S>  {
    /// The original IO object used in the handshake.
    pub io: T,
    /// A buffer of bytes that have been read but not processed as HTTP.
    ///
    /// If the client sent additional bytes after its last request, and
    /// this connection "ended" with an upgrade, the read buffer will contain
    /// those bytes.
    ///
    /// You will want to check for any existing bytes if you plan to continue
    /// communicating on the IO object.
    pub read_buf: Bytes,
    /// The `Service` used to serve this connection.
    pub service: S,
    _inner: (),
}

// ===== impl Http =====

impl Http {
    /// Creates a new instance of the HTTP protocol, ready to spawn a server or
    /// start accepting connections.
    pub fn new() -> Http {
        Http {
            exec: Exec::Default,
            h1_half_close: true,
            h1_writev: true,
            mode: ConnectionMode::Fallback,
            keep_alive: true,
            max_buf_size: None,
            pipeline_flush: false,
        }
    }

    #[doc(hidden)]
    #[deprecated(note = "use Http::with_executor instead")]
    pub fn executor<E>(&mut self, exec: E) -> &mut Self
    where
        E: Executor<Box<Future<Item=(), Error=()> + Send>> + Send + Sync + 'static
    {
        self.exec = Exec::Executor(Arc::new(exec));
        self
    }
}

impl<E> Http<E> {
    /// Sets whether HTTP1 is required.
    ///
    /// Default is false
    pub fn http1_only(&mut self, val: bool) -> &mut Self {
        if val {
            self.mode = ConnectionMode::H1Only;
        } else {
            self.mode = ConnectionMode::Fallback;
        }
        self
    }

    /// Set whether HTTP/1 connections should support half-closures.
    ///
    /// Clients can chose to shutdown their write-side while waiting
    /// for the server to respond. Setting this to `false` will
    /// automatically close any connection immediately if `read`
    /// detects an EOF.
    ///
    /// Default is `true`.
    #[inline]
    pub fn http1_half_close(&mut self, val: bool) -> &mut Self {
        self.h1_half_close = val;
        self
    }

    /// Set whether HTTP/1 connections should try to use vectored writes,
    /// or always flatten into a single buffer.
    ///
    /// Note that setting this to false may mean more copies of body data,
    /// but may also improve performance when an IO transport doesn't
    /// support vectored writes well, such as most TLS implementations.
    ///
    /// Default is `true`.
    #[inline]
    pub fn http1_writev(&mut self, val: bool) -> &mut Self {
        self.h1_writev = val;
        self
    }

    /// Sets whether HTTP2 is required.
    ///
    /// Default is false
    pub fn http2_only(&mut self, val: bool) -> &mut Self {
        if val {
            self.mode = ConnectionMode::H2Only;
        } else {
            self.mode = ConnectionMode::Fallback;
        }
        self
    }

    /// Enables or disables HTTP keep-alive.
    ///
    /// Default is true.
    pub fn keep_alive(&mut self, val: bool) -> &mut Self {
        self.keep_alive = val;
        self
    }

    /// Set the maximum buffer size for the connection.
    ///
    /// Default is ~400kb.
    ///
    /// # Panics
    ///
    /// The minimum value allowed is 8192. This method panics if the passed `max` is less than the minimum.
    pub fn max_buf_size(&mut self, max: usize) -> &mut Self {
        assert!(
            max >= proto::h1::MINIMUM_MAX_BUFFER_SIZE,
            "the max_buf_size cannot be smaller than the minimum that h1 specifies."
        );
        self.max_buf_size = Some(max);
        self
    }

    /// Aggregates flushes to better support pipelined responses.
    ///
    /// Experimental, may have bugs.
    ///
    /// Default is false.
    pub fn pipeline_flush(&mut self, enabled: bool) -> &mut Self {
        self.pipeline_flush = enabled;
        self
    }

    /// Set the executor used to spawn background tasks.
    ///
    /// Default uses implicit default (like `tokio::spawn`).
    pub fn with_executor<E2>(self, exec: E2) -> Http<E2> {
        Http {
            exec,
            h1_half_close: self.h1_half_close,
            h1_writev: self.h1_writev,
            mode: self.mode,
            keep_alive: self.keep_alive,
            max_buf_size: self.max_buf_size,
            pipeline_flush: self.pipeline_flush,
        }
    }

    /// Bind a connection together with a [`Service`](::service::Service).
    ///
    /// This returns a Future that must be polled in order for HTTP to be
    /// driven on the connection.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate hyper;
    /// # extern crate tokio_io;
    /// # #[cfg(feature = "runtime")]
    /// # extern crate tokio;
    /// # use hyper::{Body, Request, Response};
    /// # use hyper::service::Service;
    /// # use hyper::server::conn::Http;
    /// # use tokio_io::{AsyncRead, AsyncWrite};
    /// # #[cfg(feature = "runtime")]
    /// # fn run<I, S>(some_io: I, some_service: S)
    /// # where
    /// #     I: AsyncRead + AsyncWrite + Send + 'static,
    /// #     S: Service<ReqBody=Body, ResBody=Body> + Send + 'static,
    /// #     S::Future: Send
    /// # {
    /// # use hyper::rt::Future;
    /// # use tokio::reactor::Handle;
    /// let http = Http::new();
    /// let conn = http.serve_connection(some_io, some_service);
    ///
    /// let fut = conn.map_err(|e| {
    ///     eprintln!("server connection error: {}", e);
    /// });
    ///
    /// hyper::rt::spawn(fut);
    /// # }
    /// # fn main() {}
    /// ```
    pub fn serve_connection<S, I, Bd>(&self, io: I, service: S) -> Connection<I, S, E>
    where
        S: Service<ReqBody=Body, ResBody=Bd>,
        S::Error: Into<Box<::std::error::Error + Send + Sync>>,
        Bd: Payload,
        I: AsyncRead + AsyncWrite,
        E: H2Exec<S::Future, Bd>,
    {
        let either = match self.mode {
            ConnectionMode::H1Only | ConnectionMode::Fallback => {
                let mut conn = proto::Conn::new(io);
                if !self.keep_alive {
                    conn.disable_keep_alive();
                }
                if !self.h1_half_close {
                    conn.set_disable_half_close();
                }
                if !self.h1_writev {
                    conn.set_write_strategy_flatten();
                }
                conn.set_flush_pipeline(self.pipeline_flush);
                if let Some(max) = self.max_buf_size {
                    conn.set_max_buf_size(max);
                }
                let sd = proto::h1::dispatch::Server::new(service);
                Either::A(proto::h1::Dispatcher::new(sd, conn))
            }
            ConnectionMode::H2Only => {
                let rewind_io = Rewind::new(io);
                let h2 = proto::h2::Server::new(rewind_io, service, self.exec.clone());
                Either::B(h2)
            }
        };

        Connection {
            conn: Some(either),
            fallback: if self.mode == ConnectionMode::Fallback {
                Fallback::ToHttp2(self.exec.clone())
            } else {
                Fallback::Http1Only
            },
        }
    }

    /// Bind the provided `addr` with the default `Handle` and return [`Serve`](Serve).
    ///
    /// This method will bind the `addr` provided with a new TCP listener ready
    /// to accept connections. Each connection will be processed with the
    /// `make_service` object provided, creating a new service per
    /// connection.
    #[cfg(feature = "runtime")]
    pub fn serve_addr<S, Bd>(&self, addr: &SocketAddr, make_service: S) -> ::Result<Serve<AddrIncoming, S, E>>
    where
        S: MakeServiceRef<
            AddrStream,
            ReqBody=Body,
            ResBody=Bd,
        >,
        S::Error: Into<Box<::std::error::Error + Send + Sync>>,
        Bd: Payload,
        E: H2Exec<<S::Service as Service>::Future, Bd>,
    {
        let mut incoming = AddrIncoming::new(addr, None)?;
        if self.keep_alive {
            incoming.set_keepalive(Some(Duration::from_secs(90)));
        }
        Ok(self.serve_incoming(incoming, make_service))
    }

    /// Bind the provided `addr` with the `Handle` and return a [`Serve`](Serve)
    ///
    /// This method will bind the `addr` provided with a new TCP listener ready
    /// to accept connections. Each connection will be processed with the
    /// `make_service` object provided, creating a new service per
    /// connection.
    #[cfg(feature = "runtime")]
    pub fn serve_addr_handle<S, Bd>(&self, addr: &SocketAddr, handle: &Handle, make_service: S) -> ::Result<Serve<AddrIncoming, S, E>>
    where
        S: MakeServiceRef<
            AddrStream,
            ReqBody=Body,
            ResBody=Bd,
        >,
        S::Error: Into<Box<::std::error::Error + Send + Sync>>,
        Bd: Payload,
        E: H2Exec<<S::Service as Service>::Future, Bd>,
    {
        let mut incoming = AddrIncoming::new(addr, Some(handle))?;
        if self.keep_alive {
            incoming.set_keepalive(Some(Duration::from_secs(90)));
        }
        Ok(self.serve_incoming(incoming, make_service))
    }

    /// Bind the provided stream of incoming IO objects with a `MakeService`.
    pub fn serve_incoming<I, S, Bd>(&self, incoming: I, make_service: S) -> Serve<I, S, E>
    where
        I: Stream,
        I::Error: Into<Box<::std::error::Error + Send + Sync>>,
        I::Item: AsyncRead + AsyncWrite,
        S: MakeServiceRef<
            I::Item,
            ReqBody=Body,
            ResBody=Bd,
        >,
        S::Error: Into<Box<::std::error::Error + Send + Sync>>,
        Bd: Payload,
        E: H2Exec<<S::Service as Service>::Future, Bd>,
    {
        Serve {
            incoming,
            make_service,
            protocol: self.clone(),
        }
    }
}


// ===== impl Connection =====

impl<I, B, S, E> Connection<I, S, E>
where
    S: Service<ReqBody=Body, ResBody=B>,
    S::Error: Into<Box<::std::error::Error + Send + Sync>>,
    I: AsyncRead + AsyncWrite,
    B: Payload + 'static,
    E: H2Exec<S::Future, B>,
{
    /// Start a graceful shutdown process for this connection.
    ///
    /// This `Connection` should continue to be polled until shutdown
    /// can finish.
    pub fn graceful_shutdown(&mut self) {
        match *self.conn.as_mut().unwrap() {
            Either::A(ref mut h1) => {
                h1.disable_keep_alive();
            },
            Either::B(ref mut h2) => {
                h2.graceful_shutdown();
            }
        }
    }

    /// Return the inner IO object, and additional information.
    ///
    /// If the IO object has been "rewound" the io will not contain those bytes rewound.
    /// This should only be called after `poll_without_shutdown` signals
    /// that the connection is "done". Otherwise, it may not have finished
    /// flushing all necessary HTTP bytes.
    ///
    /// # Panics
    /// This method will panic if this connection is using an h2 protocol.
    pub fn into_parts(self) -> Parts<I, S> {
        self.try_into_parts().unwrap_or_else(|| panic!("h2 cannot into_inner"))
    }

    /// Return the inner IO object, and additional information, if available.
    ///
    /// This method will return a `None` if this connection is using an h2 protocol.
    pub fn try_into_parts(self) -> Option<Parts<I, S>> {
        match self.conn.unwrap() {
            Either::A(h1) => {
                let (io, read_buf, dispatch) = h1.into_inner();
                Some(Parts {
                    io: io,
                    read_buf: read_buf,
                    service: dispatch.into_service(),
                    _inner: (),
                })
            },
            Either::B(_h2) => None,
        }
    }

    /// Poll the connection for completion, but without calling `shutdown`
    /// on the underlying IO.
    ///
    /// This is useful to allow running a connection while doing an HTTP
    /// upgrade. Once the upgrade is completed, the connection would be "done",
    /// but it is not desired to actally shutdown the IO object. Instead you
    /// would take it back using `into_parts`.
    pub fn poll_without_shutdown(&mut self) -> Poll<(), ::Error> {
        loop {
            let polled = match *self.conn.as_mut().unwrap() {
                Either::A(ref mut h1) => h1.poll_without_shutdown(),
                Either::B(ref mut h2) => return h2.poll().map(|x| x.map(|_| ())),
            };
            match polled {
                Ok(x) => return Ok(x),
                Err(e) => {
                    debug!("error polling connection protocol without shutdown: {}", e);
                    match *e.kind() {
                        Kind::Parse(Parse::VersionH2) if self.fallback.to_h2() => {
                            self.upgrade_h2();
                            continue;
                        }
                        _ => return Err(e),
                    }
                }
            }
        }
    }

    fn upgrade_h2(&mut self) {
        trace!("Trying to upgrade connection to h2");
        let conn = self.conn.take();

        let (io, read_buf, dispatch) = match conn.unwrap() {
            Either::A(h1) => {
                h1.into_inner()
            },
            Either::B(_h2) => {
                panic!("h2 cannot into_inner");
            }
        };
        let mut rewind_io = Rewind::new(io);
        rewind_io.rewind(read_buf);
        let exec = match self.fallback {
            Fallback::ToHttp2(ref exec) => exec.clone(),
            Fallback::Http1Only => unreachable!("upgrade_h2 with Fallback::Http1Only"),
        };
        let h2 = proto::h2::Server::new(rewind_io, dispatch.into_service(), exec);

        debug_assert!(self.conn.is_none());
        self.conn = Some(Either::B(h2));
    }

    /// Enable this connection to support higher-level HTTP upgrades.
    ///
    /// See [the `upgrade` module](::upgrade) for more.
    pub fn with_upgrades(self) -> UpgradeableConnection<I, S, E>
    where
        I: Send,
    {
        UpgradeableConnection {
            inner: self,
        }
    }
}

impl<I, B, S, E> Future for Connection<I, S, E>
where
    S: Service<ReqBody=Body, ResBody=B> + 'static,
    S::Error: Into<Box<::std::error::Error + Send + Sync>>,
    I: AsyncRead + AsyncWrite + 'static,
    B: Payload + 'static,
    E: H2Exec<S::Future, B>,
{
    type Item = ();
    type Error = ::Error;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        loop {
            match self.conn.poll() {
                Ok(x) => return Ok(x.map(|opt| {
                    if let Some(proto::Dispatched::Upgrade(pending)) = opt {
                        // With no `Send` bound on `I`, we can't try to do
                        // upgrades here. In case a user was trying to use
                        // `Body::on_upgrade` with this API, send a special
                        // error letting them know about that.
                        pending.manual();
                    }
                })),
                Err(e) => {
                    debug!("error polling connection protocol: {}", e);
                    match *e.kind() {
                        Kind::Parse(Parse::VersionH2) if self.fallback.to_h2() => {
                            self.upgrade_h2();
                            continue;
                        }
                        _ => return Err(e),
                    }
                }
            }
        }
    }
}

impl<I, S> fmt::Debug for Connection<I, S>
where
    S: Service,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Connection")
            .finish()
    }
}
// ===== impl Serve =====

impl<I, S, E> Serve<I, S, E> {
    /// Spawn all incoming connections onto the executor in `Http`.
    pub(super) fn spawn_all(self) -> SpawnAll<I, S, E> {
        SpawnAll {
            serve: self,
        }
    }

    /// Get a reference to the incoming stream.
    #[inline]
    pub fn incoming_ref(&self) -> &I {
        &self.incoming
    }

    /// Get a mutable reference to the incoming stream.
    #[inline]
    pub fn incoming_mut(&mut self) -> &mut I {
        &mut self.incoming
    }
}

impl<I, S, B, E> Stream for Serve<I, S, E>
where
    I: Stream,
    I::Item: AsyncRead + AsyncWrite,
    I::Error: Into<Box<::std::error::Error + Send + Sync>>,
    S: MakeServiceRef<I::Item, ReqBody=Body, ResBody=B>,
    //S::Error2: Into<Box<::std::error::Error + Send + Sync>>,
    //SME: Into<Box<::std::error::Error + Send + Sync>>,
    B: Payload,
    E: H2Exec<<S::Service as Service>::Future, B>,
{
    type Item = Connecting<I::Item, S::Future, E>;
    type Error = ::Error;

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        if let Some(io) = try_ready!(self.incoming.poll().map_err(::Error::new_accept)) {
            let new_fut = self.make_service.make_service_ref(&io);
            Ok(Async::Ready(Some(Connecting {
                future: new_fut,
                io: Some(io),
                protocol: self.protocol.clone(),
            })))
        } else {
            Ok(Async::Ready(None))
        }
    }
}

// ===== impl Connecting =====

impl<I, F, E, S, B> Future for Connecting<I, F, E>
where
    I: AsyncRead + AsyncWrite,
    F: Future<Item=S>,
    S: Service<ReqBody=Body, ResBody=B>,
    B: Payload,
    E: H2Exec<S::Future, B>,
{
    type Item = Connection<I, S, E>;
    type Error = F::Error;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        let service = try_ready!(self.future.poll());
        let io = self.io.take().expect("polled after complete");
        Ok(self.protocol.serve_connection(io, service).into())
    }
}

// ===== impl SpawnAll =====

#[cfg(feature = "runtime")]
impl<S, E> SpawnAll<AddrIncoming, S, E> {
    pub(super) fn local_addr(&self) -> SocketAddr {
        self.serve.incoming.local_addr()
    }
}

impl<I, S, E> SpawnAll<I, S, E> {
    pub(super) fn incoming_ref(&self) -> &I {
        self.serve.incoming_ref()
    }
}

impl<I, S, B, E> SpawnAll<I, S, E>
where
    I: Stream,
    I::Error: Into<Box<::std::error::Error + Send + Sync>>,
    I::Item: AsyncRead + AsyncWrite + Send + 'static,
    S: MakeServiceRef<
        I::Item,
        ReqBody=Body,
        ResBody=B,
    >,
    B: Payload,
    E: H2Exec<<S::Service as Service>::Future, B>,
{
    pub(super) fn poll_watch<W>(&mut self, watcher: &W) -> Poll<(), ::Error>
    where
        E: NewSvcExec<I::Item, S::Future, S::Service, E, W>,
        W: Watcher<I::Item, S::Service, E>,
    {
        loop {
            if let Some(connecting) = try_ready!(self.serve.poll()) {
                let fut = NewSvcTask::new(connecting, watcher.clone());
                self.serve.protocol.exec.execute_new_svc(fut)?;
            } else {
                return Ok(Async::Ready(()))
            }
        }
    }
}

pub(crate) mod spawn_all {
    use futures::{Future, Poll};
    use tokio_io::{AsyncRead, AsyncWrite};

    use body::{Body, Payload};
    use common::exec::H2Exec;
    use service::Service;
    use super::{Connecting, UpgradeableConnection};

    // Used by `SpawnAll` to optionally watch a `Connection` future.
    //
    // The regular `hyper::Server` just uses a `NoopWatcher`, which does
    // not need to watch anything, and so returns the `Connection` untouched.
    //
    // The `Server::with_graceful_shutdown` needs to keep track of all active
    // connections, and signal that they start to shutdown when prompted, so
    // it has a `GracefulWatcher` implementation to do that.
    pub trait Watcher<I, S: Service, E>: Clone {
        type Future: Future<Item=(), Error=::Error>;

        fn watch(&self, conn: UpgradeableConnection<I, S, E>) -> Self::Future;
    }

    #[allow(missing_debug_implementations)]
    #[derive(Copy, Clone)]
    pub struct NoopWatcher;

    impl<I, S, E> Watcher<I, S, E> for NoopWatcher
    where
        I: AsyncRead + AsyncWrite + Send + 'static,
        S: Service<ReqBody=Body> + 'static,
        E: H2Exec<S::Future, S::ResBody>,
    {
        type Future = UpgradeableConnection<I, S, E>;

        fn watch(&self, conn: UpgradeableConnection<I, S, E>) -> Self::Future {
            conn
        }
    }

    // This is a `Future<Item=(), Error=()>` spawned to an `Executor` inside
    // the `SpawnAll`. By being a nameable type, we can be generic over the
    // user's `Service::Future`, and thus an `Executor` can execute it.
    //
    // Doing this allows for the server to conditionally require `Send` futures,
    // depending on the `Executor` configured.
    //
    // Users cannot import this type, nor the associated `NewSvcExec`. Instead,
    // a blanket implementation for `Executor<impl Future>` is sufficient.
    #[allow(missing_debug_implementations)]
    pub struct NewSvcTask<I, N, S: Service, E, W: Watcher<I, S, E>> {
        state: State<I, N, S, E, W>,
    }

    enum State<I, N, S: Service, E, W: Watcher<I, S, E>> {
        Connecting(Connecting<I, N, E>, W),
        Connected(W::Future),
    }

    impl<I, N, S: Service, E, W: Watcher<I, S, E>> NewSvcTask<I, N, S, E, W> {
        pub(super) fn new(connecting: Connecting<I, N, E>, watcher: W) -> Self {
            NewSvcTask {
                state: State::Connecting(connecting, watcher),
            }
        }
    }

    impl<I, N, S, B, E, W> Future for NewSvcTask<I, N, S, E, W>
    where
        I: AsyncRead + AsyncWrite + Send + 'static,
        N: Future<Item=S>,
        N::Error: Into<Box<::std::error::Error + Send + Sync>>,
        S: Service<ReqBody=Body, ResBody=B>,
        B: Payload,
        E: H2Exec<S::Future, B>,
        W: Watcher<I, S, E>,
    {
        type Item = ();
        type Error = ();

        fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
            loop {
                let next = match self.state {
                    State::Connecting(ref mut connecting, ref watcher) => {
                        let conn = try_ready!(connecting
                            .poll()
                            .map_err(|err| {
                                let err = ::Error::new_user_new_service(err);
                                debug!("connection error: {}", err);
                            }));
                        let connected = watcher.watch(conn.with_upgrades());
                        State::Connected(connected)
                    },
                    State::Connected(ref mut future) => {
                        return future
                            .poll()
                            .map_err(|err| {
                                debug!("connection error: {}", err);
                            });
                    }
                };

                self.state = next;
            }
        }
    }
}

mod upgrades {
    use super::*;

    // A future binding a connection with a Service with Upgrade support.
    //
    // This type is unnameable outside the crate, and so basically just an
    // `impl Future`, without requiring Rust 1.26.
    #[must_use = "futures do nothing unless polled"]
    #[allow(missing_debug_implementations)]
    pub struct UpgradeableConnection<T, S, E>
    where
        S: Service,
    {
        pub(super) inner: Connection<T, S, E>,
    }

    impl<I, B, S, E> UpgradeableConnection<I, S, E>
    where
        S: Service<ReqBody=Body, ResBody=B>,// + 'static,
        S::Error: Into<Box<::std::error::Error + Send + Sync>>,
        I: AsyncRead + AsyncWrite,
        B: Payload + 'static,
        E: H2Exec<S::Future, B>,
    {
        /// Start a graceful shutdown process for this connection.
        ///
        /// This `Connection` should continue to be polled until shutdown
        /// can finish.
        pub fn graceful_shutdown(&mut self) {
            self.inner.graceful_shutdown()
        }
    }

    impl<I, B, S, E> Future for UpgradeableConnection<I, S, E>
    where
        S: Service<ReqBody=Body, ResBody=B> + 'static,
        S::Error: Into<Box<::std::error::Error + Send + Sync>>,
        I: AsyncRead + AsyncWrite + Send + 'static,
        B: Payload + 'static,
        E: super::H2Exec<S::Future, B>,
    {
        type Item = ();
        type Error = ::Error;

        fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
            loop {
                match self.inner.conn.poll() {
                    Ok(Async::NotReady) => return Ok(Async::NotReady),
                    Ok(Async::Ready(Some(proto::Dispatched::Shutdown))) |
                    Ok(Async::Ready(None)) => {
                        return Ok(Async::Ready(()));
                    },
                    Ok(Async::Ready(Some(proto::Dispatched::Upgrade(pending)))) => {
                        let h1 = match mem::replace(&mut self.inner.conn, None) {
                            Some(Either::A(h1)) => h1,
                            _ => unreachable!("Upgrade expects h1"),
                        };

                        let (io, buf, _) = h1.into_inner();
                        pending.fulfill(Upgraded::new(Box::new(io), buf));
                        return Ok(Async::Ready(()));
                    },
                    Err(e) => {
                        debug!("error polling connection protocol: {}", e);
                        match *e.kind() {
                            Kind::Parse(Parse::VersionH2) if self.inner.fallback.to_h2() => {
                                self.inner.upgrade_h2();
                                continue;
                            }
                            _ => return Err(e),
                        }
                    }
                }
            }
        }
    }
}