1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
use itertools::Itertools;
use swar::*;

/// Gets all the possible offsets in a feature that maintain a particular
/// radius at max.
///
/// - `sp` - Search parent CHF<6>
/// - `sc` - Search child CHF<7>
/// - `tp` - Target parent CHF<6>
///
/// Returns an iterator over the (tc, sod) target children
/// and sum of distance pairs.
pub fn search_radius128(
    bits: u32,
    sp: Bits2<u128>,
    sc: Bits1<u128>,
    tp: Bits2<u128>,
    radius: u32,
) -> impl Iterator<Item = (Bits1<u128>, u32)> {
    let (lsp, rsp) = sp.halve();
    let (lsc, rsc) = sc.halve();
    let (ltp, rtp) = tp.halve();

    Box::new(
        search_radius64(bits, lsp, lsc, ltp, radius).flat_map(move |(ltc, lsod)| {
            search_radius64(bits, rsp, rsc, rtp, radius - lsod)
                .map(move |(rtc, rsod)| (Bits1::union(ltc, rtc), lsod + rsod))
        }),
    )
}

/// Gets all the possible offsets in a feature that maintain a particular
/// radius at max.
///
/// - `sp` - Search parent CHF<5>
/// - `sc` - Search child CHF<6>
/// - `tp` - Target parent CHF<5>
///
/// Returns an iterator over the (tc, sod) target children
/// and sum of distance pairs.
pub fn search_radius64(
    bits: u32,
    sp: Bits4<u128>,
    sc: Bits2<u128>,
    tp: Bits4<u128>,
    radius: u32,
) -> impl Iterator<Item = (Bits2<u128>, u32)> {
    let (lsp, rsp) = sp.halve();
    let (lsc, rsc) = sc.halve();
    let (ltp, rtp) = tp.halve();

    Box::new(
        search_radius32(bits, lsp, lsc, ltp, radius).flat_map(move |(ltc, lsod)| {
            search_radius32(bits, rsp, rsc, rtp, radius - lsod)
                .map(move |(rtc, rsod)| (Bits2::union(ltc, rtc), lsod + rsod))
        }),
    )
}

/// Gets all the possible offsets in a feature that maintain a particular
/// radius at max.
///
/// - `sp` - Search parent CHF<4>
/// - `sc` - Search child CHF<5>
/// - `tp` - Target parent CHF<4>
///
/// Returns an iterator over the (tc, sod) target children
/// and sum of distance pairs.
pub fn search_radius32(
    bits: u32,
    sp: Bits8<u128>,
    sc: Bits4<u128>,
    tp: Bits8<u128>,
    radius: u32,
) -> impl Iterator<Item = (Bits4<u128>, u32)> {
    let (lsp, rsp) = sp.halve();
    let (lsc, rsc) = sc.halve();
    let (ltp, rtp) = tp.halve();

    Box::new(
        search_radius16(bits, lsp, lsc, ltp, radius).flat_map(move |(ltc, lsod)| {
            search_radius16(bits, rsp, rsc, rtp, radius - lsod)
                .map(move |(rtc, rsod)| (Bits4::union(ltc, rtc), lsod + rsod))
        }),
    )
}

/// Gets all the possible offsets in a feature that maintain a particular
/// radius at max.
///
/// - `sp` - Search parent CHF<3>
/// - `sc` - Search child CHF<4>
/// - `tp` - Target parent CHF<3>
///
/// Returns an iterator over the (tc, sod) target children
/// and sum of distance pairs.
pub fn search_radius16(
    bits: u32,
    sp: Bits16<u128>,
    sc: Bits8<u128>,
    tp: Bits16<u128>,
    radius: u32,
) -> impl Iterator<Item = (Bits8<u128>, u32)> {
    let (lsp, rsp) = sp.halve();
    let (lsc, rsc) = sc.halve();
    let (ltp, rtp) = tp.halve();

    search_radius8(bits, lsp, lsc, ltp, radius).flat_map(move |(ltc, lsod)| {
        search_radius8(bits, rsp, rsc, rtp, radius - lsod)
            .map(move |(rtc, rsod)| (Bits8::union(ltc, rtc), lsod + rsod))
    })
}

/// Gets all the possible offsets in a feature that maintain a particular
/// radius at max.
///
/// - `sp` - Search parent CHF<2>
/// - `sc` - Search child CHF<3>
/// - `tp` - Target parent CHF<2>
///
/// Returns an iterator over the (tc, sod) target children
/// and sum of distance pairs.
pub fn search_radius8(
    bits: u32,
    sp: Bits32<u128>,
    sc: Bits16<u128>,
    tp: Bits32<u128>,
    radius: u32,
) -> impl Iterator<Item = (Bits16<u128>, u32)> {
    let (lsp, rsp) = sp.halve();
    let (lsc, rsc) = sc.halve();
    let (ltp, rtp) = tp.halve();

    Box::new(
        search_radius4(bits, lsp, lsc, ltp, radius).flat_map(move |(ltc, lsod)| {
            search_radius4(bits, rsp, rsc, rtp, radius - lsod)
                .map(move |(rtc, rsod)| (Bits16::union(ltc, rtc), lsod + rsod))
        }),
    )
}

/// Gets all the possible offsets in a feature that maintain a particular
/// radius at max.
///
/// - `sp` - Search parent CHF<1>
/// - `sc` - Search child CHF<2>
/// - `tp` - Target parent CHF<1>
///
/// Returns an iterator over the (tc, sod) target children
/// and sum of distance pairs.
pub fn search_radius4(
    bits: u32,
    sp: Bits64<u128>,
    sc: Bits32<u128>,
    tp: Bits64<u128>,
    radius: u32,
) -> impl Iterator<Item = (Bits32<u128>, u32)> {
    let (lsp, rsp) = sp.halve();
    let (lsc, rsc) = sc.halve();
    let (ltp, rtp) = tp.halve();

    search_radius2(bits, lsp, lsc, ltp, radius).flat_map(move |(ltc, lsod)| {
        search_radius2(bits, rsp, rsc, rtp, radius - lsod)
            .map(move |(rtc, rsod)| (Bits32::union(ltc, rtc), lsod + rsod))
    })
}

/// Gets all the possible offsets in a feature that maintain a particular
/// radius at max.
///
/// - `sp` - Search parent CHF<0>
/// - `sc` - Search child CHF<1>
/// - `tp` - Target parent CHF<0>
///
/// Returns an iterator over the (tc, sod) target children
/// and sum of distance pairs.
pub fn search_radius2(
    bits: u32,
    sp: Bits128<u128>,
    sc: Bits64<u128>,
    tp: Bits128<u128>,
    radius: u32,
) -> impl Iterator<Item = (Bits64<u128>, u32)> {
    // Get the number of ones in the search word.
    let sw = sp.count_ones();
    // Get the number of ones in the left half.
    let sl = (sc >> 64).count_ones();
    // Get the number of ones in the target word.
    let tw = tp.count_ones();

    search_radius(bits, sl, sw, tw, radius)
        .map(|([tl, tr], sod)| (Bits64(((1 << tl) - 1) << 64 | ((1 << tr) - 1)), sod))
}

/// Iterator over the indices that fall within a radius of a number.
///
/// - `bits` - The number of bits that make up the bit substring `sl`
///     comes from.
/// - `sl` - The weight of the left half of the search number.
/// - `sw` - The weight of the whole search number.
/// - `tw` - The weight of the whole target number.
/// - `radius` - The maximum possible sum of distances (sod) of matches.
///
/// Returns the iterator over (tl, tr, sod).
pub fn search_radius(
    bits: u32,
    sl: u32,
    sw: u32,
    tw: u32,
    radius: u32,
) -> impl Iterator<Item = ([u32; 2], u32)> {
    // This function uses things derived in the Search section in the crate
    // documentation. Read that before messing with this code.

    // Compute the `max` and `min` for `tl` range.
    let max = std::cmp::min(tw, bits);
    let min = tw - max;

    // We do a lot of signed operations and sometimes compute negative numbers.
    // It is easier to change these to `i32` now.
    let sl = sl as i32;
    let sw = sw as i32;
    let tw = tw as i32;
    let radius = radius as i32;

    // See crate documentation on what `C` is.
    let c = 2 * sl - sw + tw;

    let filter = move |&tl: &i32| tl >= min as i32 && tl <= max as i32;

    let map = move |tl: i32| {
        (
            [tl as u32, (tw - tl) as u32],
            ((tl - sl).abs() + ((tw - tl) - (sw - sl)).abs()) as u32,
        )
    };

    let bottom_distance = (tw - sw).abs();

    // Check if we intersect.
    if bottom_distance <= radius {
        // We do, so run the ranges.
        let start = (-radius + c + 1) / 2;
        let inflection1 = sl;
        let inflection2 = sl - sw + tw;
        let min_inflection = std::cmp::min(inflection1, inflection2);
        let max_inflection = std::cmp::max(inflection1, inflection2);
        let end = (radius + c) / 2;

        let down = start..min_inflection;
        let flat = min_inflection..=max_inflection;
        let up = max_inflection + 1..=end;

        // We interleave `down` and `up` so that the resulting iterator always
        // goes in increasing `SOD` order. `flat` is always the best matches.
        flat.chain(down.interleave(up)).filter(filter).map(map)
    } else {
        // Create fake iterators to satisfy the type system.
        let down = 0..0;
        let flat = 0..=-1;
        let up = 0..=-1;

        // Also perform the same operations over here.
        flat.chain(down.interleave(up)).filter(filter).map(map)
    }
}