1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#![no_std]

extern crate embedded_hal;
extern crate nb;

mod crc;
mod user_register;

pub use crate::user_register::{Resolution, SupplyVoltage, UserRegister};

use core::marker::PhantomData;
use core::slice;

use embedded_hal::blocking::i2c::{Read, Write, WriteRead};

use crate::crc::Crc;

/// Address of the sensor
const ADDRESS: u8 = 0x40;

mod sealed {
    pub trait SealedFromRaw {
        fn from_raw(raw: u16) -> Self;
    }
}
use self::sealed::SealedFromRaw;

/// HTU2XD driver that does not own the I2C bus
///
/// The type parameter I is the I2C bus. This prevents one Htu2xd object from accidentally being
/// used with two different I2C peripherals.
///
/// # I2C type requirements
///
/// The `I` I2C bus type must return the same error type for read, write, and read/write operations.
///
/// # Examples
///
/// ## Configuration
///
/// ```no_run
/// use embedded_hal::blocking::delay::DelayMs;
/// use embedded_hal::blocking::i2c::{Read, Write, WriteRead};
/// use htu2xd::{Htu2xd, Resolution};
///
/// fn init_htu2xd<I, E, D>(i2c: &mut I, delay: &mut D) -> Result<Htu2xd<I>, E>
/// where
///     I: Read<Error = E> + Write<Error = E> + WriteRead<Error = E>,
///     D: DelayMs<u32>,
/// {
///     let mut htu = Htu2xd::new();
///
///     htu.soft_reset(i2c)?;
///     // Wait for the reset to finish
///     delay.delay_ms(15u32);
///
///     let mut register = htu.read_user_register(i2c)?;
///     register.set_resolution(Resolution::Humidity10Temperature13);
///     htu.write_user_register(i2c, register)?;
///
///     Ok(htu)
/// }
/// ```
///
/// ## Basic operation
///
/// ```no_run
/// use embedded_hal::blocking::i2c::{Read, Write, WriteRead};
/// use htu2xd::{Htu2xd, Reading, Temperature};
/// fn use_sensor<I, E>(htu: &mut Htu2xd<I>, i2c: &mut I) -> Result<(), htu2xd::Error<E>>
/// where
///     I: Write<Error = E> + Read<Error = E> + WriteRead<Error = E>,
/// {
///     let temperature_reading = htu.read_temperature_blocking(i2c)?;
///     match temperature_reading {
///         Reading::Ok(reading) => {
///             println!("Temperature {} degrees C", reading.as_degrees_celsius())
///         }
///         Reading::ErrorLow => println!("Temperature off-scale low or sensor error"),
///         Reading::ErrorHigh => println!("Temperature off-scale high or sensor error"),
///     }
///     let humidity_reading = htu.read_humidity_blocking(i2c)?;
///     match humidity_reading {
///         Reading::Ok(reading) => println!("Humidity {}%", reading.as_percent_relative()),
///         Reading::ErrorLow => println!("Humidity off-scale low or sensor error"),
///         Reading::ErrorHigh => println!("Humidity off-scale high or sensor error"),
///     }
///     Ok(())
/// }
/// ```
///
/// ## Temperature and humidity reading without clock stretching
///
/// ```no_run
/// use embedded_hal::blocking::i2c::{Read, Write, WriteRead};
/// use htu2xd::{Htu2xd, Reading, Temperature};
///
/// enum I2cError {
///     Nak,
///     OtherError,
/// }
///
/// impl I2cError {
///     fn is_nak(&self) -> bool {
///         matches!(self, I2cError::Nak)
///     }
/// }
///
/// fn use_sensor<I>(htu: &mut Htu2xd<I>, i2c: &mut I) -> Result<(), htu2xd::Error<I2cError>>
/// where
///     I: Write<Error = I2cError> + Read<Error = I2cError> + WriteRead<Error = I2cError>,
/// {
///     let mut temperature_step2 = htu.read_temperature(i2c)?;
///     // Do something else while the sensor is busy
///     // Later, read the result
///     let temperature_reading = nb::block!(temperature_step2.read_result(i2c, I2cError::is_nak))?;
///     match temperature_reading {
///         Reading::Ok(reading) => {
///             println!("Temperature {} degrees C", reading.as_degrees_celsius())
///         }
///         Reading::ErrorLow => println!("Temperature off-scale low or sensor error"),
///         Reading::ErrorHigh => println!("Temperature off-scale high or sensor error"),
///     }
///     let mut humidity_step2 = htu.read_humidity(i2c)?;
///     // Do something else while the sensor is busy
///     // Later, read the result
///     let humidity_reading = nb::block!(humidity_step2.read_result(i2c, I2cError::is_nak))?;
///     match humidity_reading {
///         Reading::Ok(reading) => println!("Humidity {}%", reading.as_percent_relative()),
///         Reading::ErrorLow => println!("Humidity off-scale low or sensor error"),
///         Reading::ErrorHigh => println!("Humidity off-scale high or sensor error"),
///     }
///     Ok(())
/// }
/// ```
pub struct Htu2xd<I>(PhantomData<I>);

impl<I, E> Htu2xd<I>
where
    I: Read<Error = E> + Write<Error = E> + WriteRead<Error = E>,
{
    /// Creates a driver object, but does not perform any initialization
    pub fn new() -> Self {
        Htu2xd(PhantomData)
    }

    /// Resets the sensor and restores default settings, but does not restore the heater enable bit
    ///
    /// After this function returns the sensor may take up to 15 ms to reset.
    pub fn soft_reset(&mut self, i2c: &mut I) -> Result<(), E> {
        i2c.write(ADDRESS, &[Command::SoftReset as u8])
    }

    /// Reads the current humidity
    ///
    /// In this mode, the sensor stretches the I2C clock while it takes a measurement. This
    /// function blocks until the measurement has finished and been read.
    pub fn read_humidity_blocking(&mut self, i2c: &mut I) -> Result<Reading<Humidity>, Error<E>> {
        let mut buffer = [0u8; 3];
        i2c.write_read(ADDRESS, &[Command::HumidityHoldMaster as u8], &mut buffer)?;
        parse_and_check_reading(&buffer)
    }

    /// Reads the current temperature
    ///
    /// In this mode, the sensor stretches the I2C clock while it takes a measurement. This
    /// function blocks until the measurement has finished and been read.
    pub fn read_temperature_blocking(
        &mut self,
        i2c: &mut I,
    ) -> Result<Reading<Temperature>, Error<E>> {
        let mut buffer = [0u8; 3];
        i2c.write_read(
            ADDRESS,
            &[Command::TemperatureHoldMaster as u8],
            &mut buffer,
        )?;
        parse_and_check_reading(&buffer)
    }

    /// Reads the current humidity
    ///
    /// In this mode, the sensor does not stretch the I2C clock. After sending the command to
    /// the sensor, this function returns a proxy that can be polled to determine if the result
    /// is ready.
    pub fn read_humidity(&mut self, i2c: &mut I) -> Result<ResultReader<I, Humidity>, E> {
        // Send a command to start the read
        i2c.write(ADDRESS, &[Command::Humidity as u8])?;
        Ok(ResultReader {
            _driver: PhantomData,
            _reading: PhantomData,
        })
    }

    /// Reads the current temperature
    ///
    /// In this mode, the sensor does not stretch the I2C clock. After sending the command to
    /// the sensor, this function returns a proxy that can be polled to determine if the result
    /// is ready.
    pub fn read_temperature(&mut self, i2c: &mut I) -> Result<ResultReader<I, Temperature>, E> {
        // Send a command to start the read
        i2c.write(ADDRESS, &[Command::Temperature as u8])?;
        Ok(ResultReader {
            _driver: PhantomData,
            _reading: PhantomData,
        })
    }

    /// Reads the user register and returns its content
    pub fn read_user_register(&mut self, i2c: &mut I) -> Result<UserRegister, E> {
        let mut register_value = 0u8;
        i2c.write_read(
            ADDRESS,
            &[Command::ReadUser as u8],
            slice::from_mut(&mut register_value),
        )?;
        Ok(UserRegister(register_value))
    }

    /// Writes the user register
    ///
    /// You must use the `read_user_register` function to get a `UserRegister` object that
    /// can be modified and then passed to this function.
    pub fn write_user_register(&mut self, i2c: &mut I, register: UserRegister) -> Result<(), E> {
        i2c.write(ADDRESS, &[Command::WriteUser as u8, register.0])
    }
}

impl<I, E> Default for Htu2xd<I>
where
    I: Read<Error = E> + Write<Error = E> + WriteRead<Error = E>,
{
    fn default() -> Self {
        Htu2xd::new()
    }
}

/// A proxy used to read the result of a non-blocking measurement
pub struct ResultReader<'h, I, M> {
    _driver: PhantomData<&'h mut Htu2xd<I>>,
    _reading: PhantomData<M>,
}

impl<'h, I, M> ResultReader<'h, I, M>
where
    I: Read,
    M: Measurement,
{
    /// Attempts to read a measurement result from the sensor
    ///
    /// is_nak must be a closure that returns true if the provided error is a NAK (negative
    /// acknowledge) error, or false otherwise.
    ///
    /// This function returns `Err(nb::Error::WouldBlock)` if the sensor does not acknowledge
    /// its address. This means that it is still performing the measurement. This function should
    /// be called again later to try again.
    ///
    /// On success, this function returns the sensor reading.
    ///
    /// After this function returns anything other than `Err(nb::Error::WouldBlock)`, this
    /// `ResultReader` must not be used again.
    pub fn read_result<F>(
        &mut self,
        i2c: &mut I,
        is_nak: F,
    ) -> nb::Result<Reading<M>, Error<I::Error>>
    where
        F: FnOnce(&I::Error) -> bool,
    {
        let mut buffer = [0u8; 3];
        match i2c.read(ADDRESS, &mut buffer[..]) {
            Ok(()) => parse_and_check_reading(&buffer).map_err(nb::Error::Other),
            Err(e) => {
                if is_nak(&e) {
                    // Measurement is still in progress, try again later
                    Err(nb::Error::WouldBlock)
                } else {
                    // Some other error, not a NAK
                    Err(nb::Error::Other(Error::I2c(e)))
                }
            }
        }
    }
}

/// Checks the CRC of a 3-byte temperature or humidity reading and parses it as a `Reading` object
fn parse_and_check_reading<M, E>(bytes: &[u8; 3]) -> Result<Reading<M>, Error<E>>
where
    M: Measurement,
{
    // Check CRC
    let mut crc = Crc::new();
    crc.add_all(&*bytes);
    if crc.value() != 0 {
        return Err(Error::Crc);
    }

    // Parse reading
    let reading16 = (u16::from(bytes[0]) << 8) | u16::from(bytes[1]);

    Ok(Reading::from_raw(reading16))
}

/// An I2C or CRC error
#[derive(Debug)]
pub enum Error<E> {
    /// The I2C driver returned an error
    I2c(E),
    /// A message was received from the sensor with an invalid CRC checksum
    Crc,
}

impl<E> From<E> for Error<E> {
    fn from(inner: E) -> Self {
        Error::I2c(inner)
    }
}

/// A temperature reading
#[derive(Debug, Clone)]
pub struct Temperature(u16);

impl Temperature {
    /// Returns the temperature reading exactly as read from the sensor, with the status bits
    /// cleared
    pub fn as_raw(&self) -> u16 {
        self.0
    }

    /// Converts the temperature reading into degrees Celsius
    ///
    /// This function uses single-precision floating-point operations.
    pub fn as_degrees_celsius(&self) -> f32 {
        -46.85_f32 + 175.72_f32 / 65536.0_f32 * f32::from(self.0)
    }
}

/// A humidity reading
#[derive(Debug, Clone)]
pub struct Humidity(u16);

impl Humidity {
    /// Returns the humidity reading exactly as read from the sensor, with the status bits cleared
    pub fn as_raw(&self) -> u16 {
        self.0
    }

    /// Converts the temperature reading into percent relative humidity (0.0 = 0%, 100.0 = 100%)
    /// and clamps it to the 0%-100% range
    ///
    /// This function uses single-precision floating-point operations.
    pub fn as_percent_relative(&self) -> f32 {
        -6.0_f32 + 125.0_f32 / 65536.0_f32 * f32::from(self.0)
    }
}

pub trait Measurement: SealedFromRaw {}
impl SealedFromRaw for Temperature {
    fn from_raw(raw: u16) -> Self {
        Temperature(raw)
    }
}
impl Measurement for Temperature {}
impl SealedFromRaw for Humidity {
    fn from_raw(raw: u16) -> Self {
        Humidity(raw)
    }
}
impl Measurement for Humidity {}

/// Information about a temperature or humidity reading
#[derive(Debug, Clone)]
pub enum Reading<R> {
    /// The reading was completed normally
    Ok(R),
    /// The reading was very low, or the sensor has an open circuit
    ErrorLow,
    /// The reading was very high, or the sensor has a short circuit
    ErrorHigh,
}

impl<R> Reading<R>
where
    R: Measurement,
{
    fn from_raw(raw: u16) -> Self {
        match raw {
            0x0000 => Reading::ErrorLow,
            0xffff => Reading::ErrorHigh,
            _ => {
                // Clear the status bits (lowest two) and return the reading
                Reading::Ok(R::from_raw(raw & 0xfffc))
            }
        }
    }
}

/// Commands to read and write things
enum Command {
    TemperatureHoldMaster = 0xe3,
    Temperature = 0xf3,
    HumidityHoldMaster = 0xe5,
    Humidity = 0xf5,
    WriteUser = 0xe6,
    ReadUser = 0xe7,
    SoftReset = 0xfe,
}