1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
//! Methods to calculate the Similarity between two terms or sets of terms
//!
//! Several methods and algorithms to calculate the similarity are already
//! provided in the library, but you can easily add your own as well.
//! The easiest way is to use the [`Builtins`] enum.
//!
//! # Examples
//!
//! ## Using built-in methods
//!
//! ```
//! use hpo::Ontology;
//! use hpo::similarity::{Builtins, Similarity};
//! use hpo::term::InformationContentKind;
//!
//! let ontology = Ontology::from_binary("tests/example.hpo").unwrap();
//! let term1 = ontology.hpo(12638u32).unwrap();
//! let term2 = ontology.hpo(100547u32).unwrap();
//!
//! let ic = Builtins::GraphIc(InformationContentKind::Omim);
//!
//! let similarity = ic.calculate(&term1, &term2);
//! println!("The termss {} and {} have a similarity of {}", term1.id(), term2.id(), similarity);
//! // ==> "The terms HP:0012638 and HP:0100547 have a similarity of 0.2704636"
//! ```
//!
//! ## Create a custom similarity algorithm
//! Creating you own similarity algorithm is as easy as implementing the
//! [Similarity](`crate::similarity::Similarity`) trait.
//!
//! ```
//! use hpo::{Ontology, HpoTerm};
//! use hpo::similarity::Similarity;
//!
//! struct Foo {}
//! impl Similarity for Foo {
//!     /// Calculate similarity based on length of the term names
//!     fn calculate(&self, a: &HpoTerm, b: &HpoTerm) -> f32 {
//!         return (a.name().len() - b.name().len()) as f32
//!     }
//! }
//!
//! let ontology = Ontology::from_binary("tests/example.hpo").unwrap();
//! let term1 = ontology.hpo(12638u32).unwrap();
//! // ==> "Abnormal nervous system physiology"
//! let term2 = ontology.hpo(100547u32).unwrap();
//! // ==> "Abnormal forebrain morphology"
//!
//! let ic = Foo{};
//!
//! let similarity = ic.calculate(&term1, &term2);
//! assert_eq!(similarity, 5.0);
//! ```

use std::cell::RefCell;
use std::collections::HashMap;

use crate::matrix::Matrix;
use crate::set::HpoSet;
use crate::term::InformationContentKind;
use crate::{HpoError, HpoResult, HpoTerm, HpoTermId};

pub mod defaults;
pub use defaults::{
    Distance, GraphIc, InformationCoefficient, Jc, Lin, Mutation, Relevance, Resnik,
};

/// Trait for similarity score calculation between 2 [`HpoTerm`]s
///
/// `hpo` already comes pre-loaded with several common and well established
/// similarity algorithms that implement the `Similarity` trait:
/// [Builtins](`crate::similarity::Builtins`)
///
/// ```
/// use hpo::{Ontology, HpoTerm};
/// use hpo::similarity::Similarity;
///
/// struct Foo {}
/// impl Similarity for Foo {
///     /// Calculate similarity based on length of the term names
///     fn calculate(&self, a: &HpoTerm, b: &HpoTerm) -> f32 {
///         return (a.name().len() - b.name().len()) as f32
///     }
/// }
///
/// let ontology = Ontology::from_binary("tests/example.hpo").unwrap();
/// let term1 = ontology.hpo(12638u32).unwrap();
/// // ==> "Abnormal nervous system physiology"
/// let term2 = ontology.hpo(100547u32).unwrap();
/// // ==> "Abnormal forebrain morphology"
///
/// let ic = Foo{};
///
/// let similarity = ic.calculate(&term1, &term2);
/// assert_eq!(similarity, 5.0);
/// ```
pub trait Similarity {
    /// calculates the actual similarity between term a and term b
    fn calculate(&self, a: &HpoTerm, b: &HpoTerm) -> f32;
}

/// This trait is needed to calculate the similarity between [`HpoSet`]s.
///
/// For similarity calculation between [`HpoSet`]s
/// the similarity scores must be combined to derive a single `f32` value
/// from a matrix of term - term similarities
///
/// `hpo` provides some default implementations of `SimilarityCombiner`:
/// [`StandardCombiner`](`crate::similarity::StandardCombiner`)
pub trait SimilarityCombiner {
    /// This method implements the actual logic to calculate a single
    /// similarity score from a Matrix of term - term similarity scores.
    fn combine(&self, m: &Matrix<f32>) -> f32;

    /// this method is called by [`GroupSimilarity`] to combine individual term - term
    /// similarity scores into a single score for the group - group similarity
    fn calculate(&self, m: &Matrix<f32>) -> f32 {
        if m.is_empty() {
            return 0.0;
        }
        self.combine(m)
    }

    /// Returns the maximum values of each row
    fn row_maxes(&self, m: &Matrix<f32>) -> Vec<f32> {
        m.rows()
            .map(|row| {
                // I have no idea why, but I could not get a.max(b) to work
                // with the borrow checker
                row.reduce(|a, b| if a > b { a } else { b }).unwrap()
            })
            .copied()
            .collect()
    }

    /// Returns the maximum values of each column
    fn col_maxes(&self, m: &Matrix<f32>) -> Vec<f32> {
        m.cols()
            .map(|col| {
                // I have no idea why, but I could not get a.max(b) to work
                // with the borrow checker
                col.reduce(|a, b| if a > b { a } else { b }).unwrap()
            })
            .copied()
            .collect()
    }

    /// Returns the dimenension of the `Matrix`, (rows, columns)
    fn dim_f32(&self, m: &Matrix<f32>) -> (f32, f32) {
        let (rows, cols) = m.dim();
        (usize_to_f32(rows), usize_to_f32(cols))
    }
}

/// Caches the Similarity score for each [`HpoTerm`] pair
///
/// Use this struct to wrap your Similarity method if you are
/// running many batch comparisons where it's highly likely that
/// several comparisons will be repeatedly run.
/// This is very useful when you're e.g. comparing the set of a patient
/// with every disease or gene.
///
/// # Note
///
/// This struct cannot be used in multithreaded processing
pub struct CachedSimilarity<T> {
    similarity: T,
    cache: RefCell<HashMap<(HpoTermId, HpoTermId), f32>>,
}

impl<T: Similarity> CachedSimilarity<T> {
    /// Constructs a new [`CachedSimilarity`] struct
    pub fn new(similarity: T) -> Self {
        Self {
            similarity,
            cache: RefCell::new(HashMap::default()),
        }
    }
}

impl<T: Similarity> Similarity for CachedSimilarity<T> {
    fn calculate(&self, a: &HpoTerm, b: &HpoTerm) -> f32 {
        *self
            .cache
            .borrow_mut()
            .entry((a.id(), b.id()))
            .or_insert_with(|| self.similarity.calculate(a, b))
    }
}

/// Default implementations for combining similarity scores
/// of 2 [`HpoSet`]s
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum StandardCombiner {
    /// funSimAvg algorithm from [Schlicker A, et. al., BMC Bioinf (2006)](https://pubmed.ncbi.nlm.nih.gov/16776819/)
    FunSimAvg,
    /// funSimMax algorithm from [Schlicker A, et. al., BMC Bioinf (2006)](https://pubmed.ncbi.nlm.nih.gov/16776819/)
    FunSimMax,
    /// BMA algorithm from [Wang JZ, et. al., Bioinformatics (2007)](https://pubmed.ncbi.nlm.nih.gov/17344234/)
    Bma,
}

impl Default for StandardCombiner {
    fn default() -> Self {
        Self::FunSimAvg
    }
}

impl TryFrom<&str> for StandardCombiner {
    type Error = HpoError;
    fn try_from(value: &str) -> Result<Self, Self::Error> {
        match value.to_lowercase().as_str() {
            "funsimavg" => Ok(StandardCombiner::FunSimAvg),
            "funsimmax" => Ok(StandardCombiner::FunSimMax),
            "bma" => Ok(StandardCombiner::Bma),
            _ => Err(HpoError::NotImplemented),
        }
    }
}

impl StandardCombiner {
    fn fun_sim_avg(self, m: &Matrix<f32>) -> f32 {
        let (rows, cols) = self.dim_f32(m);
        let row_maxes = self.row_maxes(m);
        let col_maxes = self.col_maxes(m);
        let mut nom = row_maxes.iter().sum::<f32>() / rows;
        nom += col_maxes.iter().sum::<f32>() / cols;

        nom / 2.0
    }

    fn fun_sim_max(self, m: &Matrix<f32>) -> f32 {
        let (rows, cols) = self.dim_f32(m);
        let row_maxes = self.row_maxes(m);
        let col_maxes = self.col_maxes(m);

        (row_maxes.iter().sum::<f32>() / rows).max(col_maxes.iter().sum::<f32>() / cols)
    }

    fn bma(self, m: &Matrix<f32>) -> f32 {
        let (rows, cols) = self.dim_f32(m);
        let row_maxes = self.row_maxes(m);
        let col_maxes = self.col_maxes(m);

        (row_maxes.iter().sum::<f32>() + col_maxes.iter().sum::<f32>()) / (rows + cols)
    }
}

impl SimilarityCombiner for StandardCombiner {
    fn combine(&self, m: &Matrix<f32>) -> f32 {
        match self {
            StandardCombiner::FunSimAvg => self.fun_sim_avg(m),
            StandardCombiner::FunSimMax => self.fun_sim_max(m),
            StandardCombiner::Bma => self.bma(m),
        }
    }
}

/// calculate the Similarity score between two [`HpoSet`](`crate::HpoSet`)s
///
/// # Note
///
/// It is recommended to use the [`HpoSet::similarity`](`crate::HpoSet::similarity`)
/// method instead of creating a `GroupSimilarity` struct yourself.
///
/// # Examples
/// ## Using the preferred way
/// ```
/// use hpo::term::InformationContentKind;
/// use hpo::{Ontology, HpoSet};
/// use hpo::term::HpoGroup;
/// use hpo::similarity::{Builtins, StandardCombiner};
///
/// fn set1(ontology: &Ontology) -> HpoSet {
/// // ...
/// # let mut hpos = HpoGroup::new();
/// # hpos.insert(707u32);
/// # hpos.insert(12639u32);
/// # hpos.insert(12638u32);
/// # hpos.insert(818u32);
/// # hpos.insert(2715u32);
/// # HpoSet::new(ontology, hpos)
/// }
///
/// fn set2(ontology: &Ontology) -> HpoSet {
/// // ...
/// # let mut hpos = HpoGroup::new();
/// # hpos.insert(100547u32);
/// # hpos.insert(12638u32);
/// # hpos.insert(864u32);
/// # hpos.insert(25454u32);
/// # HpoSet::new(ontology, hpos)
/// }
///
/// let ontology = Ontology::from_binary("tests/example.hpo").unwrap();
/// let set_1 = set1(&ontology);
/// let set_2 = set2(&ontology);
///
/// let similarity = set_1.similarity(
///     &set_2,
///     Builtins::GraphIc(InformationContentKind::Omim),
///     StandardCombiner::default()
/// );
///
/// assert_eq!(similarity, 0.8177036);
/// ```
///
/// ## Using `GroupSimilarity` directly
///
/// ```
/// use hpo::term::InformationContentKind;
/// use hpo::{Ontology, HpoSet};
/// use hpo::term::HpoGroup;
/// use hpo::similarity::{Builtins, GroupSimilarity, StandardCombiner};
///
/// fn set1(ontology: &Ontology) -> HpoSet {
/// // ...
/// # let mut hpos = HpoGroup::new();
/// # hpos.insert(707u32);
/// # hpos.insert(12639u32);
/// # hpos.insert(12638u32);
/// # hpos.insert(818u32);
/// # hpos.insert(2715u32);
/// # HpoSet::new(ontology, hpos)
/// }
///
/// fn set2(ontology: &Ontology) -> HpoSet {
/// // ...
/// # let mut hpos = HpoGroup::new();
/// # hpos.insert(100547u32);
/// # hpos.insert(12638u32);
/// # hpos.insert(864u32);
/// # hpos.insert(25454u32);
/// # HpoSet::new(ontology, hpos)
/// }
///
/// let ontology = Ontology::from_binary("tests/example.hpo").unwrap();
/// let set_1 = set1(&ontology);
/// let set_2 = set2(&ontology);
///
///
/// let sim = GroupSimilarity::new(
///     StandardCombiner::FunSimAvg,
///     Builtins::GraphIc(InformationContentKind::Omim)
/// );
///
/// assert_eq!(sim.calculate(&set_1, &set_2), 0.8177036);
/// ```
pub struct GroupSimilarity<T, C> {
    combiner: C,
    similarity: T,
}

impl<T: Similarity, C: SimilarityCombiner> GroupSimilarity<T, C> {
    ///
    /// # Examples
    ///
    /// ```
    /// use hpo::similarity::GraphIc;
    /// use hpo::term::InformationContentKind;
    /// use hpo::similarity::{GroupSimilarity, StandardCombiner};
    ///
    /// // use Omim-based InformationContent for similarity calculation
    /// let graphic = GraphIc::new(InformationContentKind::Omim);
    ///
    /// // use the funSimAvg algorithm to combine the similarity scores
    /// let combiner = StandardCombiner::FunSimAvg;
    ///
    /// let sim = GroupSimilarity::new(combiner, graphic);
    /// ```
    ///
    pub fn new(combiner: C, similarity: T) -> Self {
        Self {
            combiner,
            similarity,
        }
    }

    /// calculates the similarity between two sets of terms
    pub fn calculate(&self, a: &HpoSet, b: &HpoSet) -> f32 {
        let mut v = Vec::with_capacity(a.len() * b.len());
        for t1 in a {
            for t2 in b {
                v.push(self.similarity.calculate(&t1, &t2));
            }
        }
        let m = Matrix::new(a.len(), b.len(), &v);
        self.combiner.calculate(&m)
    }
}

impl Default for GroupSimilarity<GraphIc, StandardCombiner> {
    fn default() -> Self {
        Self {
            combiner: StandardCombiner::default(),
            similarity: GraphIc::new(InformationContentKind::Omim),
        }
    }
}

/// Contains similarity methods for the standard built-in algorithms
///
/// For more details about each algorithm, check the [`defaults`] description.
///
/// # Examples
///
/// ```
/// use hpo::{Ontology, HpoSet};
/// use hpo::term::{InformationContentKind, HpoGroup};
/// use hpo::similarity::{Builtins, StandardCombiner};
///
/// fn set1(ontology: &Ontology) -> HpoSet {
/// // ...
/// # let mut hpos = HpoGroup::new();
/// # hpos.insert(707u32);
/// # hpos.insert(12639u32);
/// # hpos.insert(12638u32);
/// # hpos.insert(818u32);
/// # hpos.insert(2715u32);
/// # HpoSet::new(ontology, hpos)
/// }
///
/// fn set2(ontology: &Ontology) -> HpoSet {
/// // ...
/// # let mut hpos = HpoGroup::new();
/// # hpos.insert(100547u32);
/// # hpos.insert(12638u32);
/// # hpos.insert(864u32);
/// # hpos.insert(25454u32);
/// # HpoSet::new(ontology, hpos)
/// }
///
/// let ontology = Ontology::from_binary("tests/example.hpo").unwrap();
/// let set_1 = set1(&ontology);
/// let set_2 = set2(&ontology);
///
/// let sim_method = Builtins::GraphIc(InformationContentKind::Omim);
///
/// let similarity = set_1.similarity(
///     &set_2,
///     sim_method,
///     StandardCombiner::default()
/// );
/// ```
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum Builtins {
    /// [Distance](`Distance`) - based similarity
    Distance(InformationContentKind),
    /// [GraphIc](`GraphIc`) - based similarity
    GraphIc(InformationContentKind),
    /// [InformationCoefficient](`InformationCoefficient`) - based similarity
    InformationCoefficient(InformationContentKind),
    /// [Jiang & Conrath](`Jc`) - based similarity
    Jc(InformationContentKind),
    /// [Lin](`Lin`) - based similarity
    Lin(InformationContentKind),
    /// [Mutation](`Mutation`) - based similarity
    Mutation(InformationContentKind),
    /// [Relevance](`Relevance`) - based similarity
    Relevance(InformationContentKind),
    /// [Resnik](`Resnik`) - based similarity
    Resnik(InformationContentKind),
}

impl Builtins {
    /// Constructs a new `Builtins` struct from a `str`
    ///
    /// This method is useful to get a Similarity algorithm from a user provided string
    ///
    /// ```
    /// use hpo::term::InformationContentKind;
    /// use hpo::similarity::Builtins;
    ///
    /// let sim_method = Builtins::new("graphic", InformationContentKind::Omim);
    /// assert!(sim_method.is_ok());
    ///
    /// let sim_method = Builtins::new("does-not-exist", InformationContentKind::Omim);
    /// assert!(sim_method.is_err());
    /// ```
    ///
    /// # Errors
    ///
    /// Returns an [`HpoError::DoesNotExist`] error if no similary method with the given name exists
    pub fn new(method: &str, kind: InformationContentKind) -> HpoResult<Self> {
        match method.to_lowercase().as_str() {
            "graphic" => Ok(Self::GraphIc(kind)),
            "resnik" => Ok(Self::Resnik(kind)),
            "distance" | "dist" => Ok(Self::Distance(kind)),
            "informationcoefficient" | "ic" => Ok(Self::InformationCoefficient(kind)),
            "jc" | "jc2" => Ok(Self::Jc(kind)),
            "lin" => Ok(Self::Lin(kind)),
            "relevance" | "rel" => Ok(Self::Relevance(kind)),
            "mutation" | "mut" => Ok(Self::Mutation(kind)),
            _ => Err(HpoError::DoesNotExist),
        }
    }
}

impl Similarity for Builtins {
    fn calculate(&self, a: &HpoTerm, b: &HpoTerm) -> f32 {
        match self {
            Self::GraphIc(kind) => GraphIc::new(*kind).calculate(a, b),
            Self::Resnik(kind) => Resnik::new(*kind).calculate(a, b),
            Self::Distance(_) => Distance::new().calculate(a, b),
            Self::InformationCoefficient(kind) => {
                InformationCoefficient::new(*kind).calculate(a, b)
            }
            Self::Jc(kind) => Jc::new(*kind).calculate(a, b),
            Self::Lin(kind) => Lin::new(*kind).calculate(a, b),
            Self::Relevance(kind) => Relevance::new(*kind).calculate(a, b),
            Self::Mutation(kind) => Mutation::new(*kind).calculate(a, b),
        }
    }
}

/// This is a really weird way of converting a usize into a float but I
/// want to make sure the app crashes, so I don't want to use `as`.
fn usize_to_f32(n: usize) -> f32 {
    <usize as TryInto<u16>>::try_into(n)
        .expect("Matrix too large")
        .into()
}