1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
// Hound -- A wav encoding and decoding library in Rust
// Copyright (C) 2015 Ruud van Asseldonk
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// A copy of the License has been included in the root of the repository.
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::cmp;
use std::fs;
use std::io;
use std::marker;
use std::mem;
use std::path;
use super::{Error, Result, Sample, SampleFormat, WavSpec};

/// Extends the functionality of `io::Read` with additional methods.
///
/// The methods may be used on any type that implements `io::Read`.
pub trait ReadExt: io::Read {
    /// Reads as many bytes as `buf` is long.
    ///
    /// This may issue multiple `read` calls internally. An error is returned
    /// if `read` read 0 bytes before the buffer is full.
    //  TODO: There is an RFC proposing a method like this for the standard library.
    fn read_into(&mut self, buf: &mut [u8]) -> io::Result<()>;

    /// Reads `n` bytes and returns them in a vector.
    fn read_bytes(&mut self, n: usize) -> io::Result<Vec<u8>>;

    /// Skip over `n` bytes.
    fn skip_bytes(&mut self, n: usize) -> io::Result<()>;

    /// Reads a single byte and interprets it as an 8-bit signed integer.
    fn read_i8(&mut self) -> io::Result<i8>;

    /// Reads a single byte and interprets it as an 8-bit unsigned integer.
    fn read_u8(&mut self) -> io::Result<u8>;

    /// Reads two bytes and interprets them as a little-endian 16-bit signed integer.
    fn read_le_i16(&mut self) -> io::Result<i16>;

    /// Reads two bytes and interprets them as a little-endian 16-bit unsigned integer.
    fn read_le_u16(&mut self) -> io::Result<u16>;

    /// Reads three bytes and interprets them as a little-endian 24-bit signed integer.
    ///
    /// The sign bit will be extended into the most significant byte.
    fn read_le_i24(&mut self) -> io::Result<i32>;

    /// Reads three bytes and interprets them as a little-endian 24-bit unsigned integer.
    ///
    /// The most significant byte will be 0.
    fn read_le_u24(&mut self) -> io::Result<u32>;

    /// Reads four bytes and interprets them as a little-endian 32-bit signed integer.
    fn read_le_i32(&mut self) -> io::Result<i32>;

    /// Reads four bytes and interprets them as a little-endian 32-bit unsigned integer.
    fn read_le_u32(&mut self) -> io::Result<u32>;

    /// Reads four bytes and interprets them as a little-endian 32-bit IEEE float.
    fn read_le_f32(&mut self) -> io::Result<f32>;
}

impl<R> ReadExt for R
    where R: io::Read
{
    #[inline(always)]
    fn read_into(&mut self, buf: &mut [u8]) -> io::Result<()> {
        let mut n = 0;
        while n < buf.len() {
            let progress = try!(self.read(&mut buf[n..]));
            if progress > 0 {
                n += progress;
            } else {
                return Err(io::Error::new(io::ErrorKind::Other, "Failed to read enough bytes."));
            }
        }
        Ok(())
    }

    #[inline(always)]
    fn skip_bytes(&mut self, n: usize) -> io::Result<()> {
        // Read from the input in chunks of 1024 bytes at a time, and discard
        // the result. 1024 is a tradeoff between doing a lot of calls, and
        // using too much stack space. This method is not in a hot path, so it
        // can afford to do this.
        let mut n_read = 0;
        let mut buf = [0u8; 1024];
        while n_read < n {
            let end = cmp::min(n - n_read, 1024);
            let progress = try!(self.read(&mut buf[0..end]));
            if progress > 0 {
                n_read += progress;
            } else {
                return Err(io::Error::new(io::ErrorKind::Other, "Failed to read enough bytes."));
            }
        }
        Ok(())
    }

    #[inline(always)]
    fn read_bytes(&mut self, n: usize) -> io::Result<Vec<u8>> {
        // We allocate a runtime fixed size buffer, and we are going to read
        // into it, so zeroing or filling the buffer is a waste. This method
        // is safe, because the contents of the buffer are only exposed when
        // they have been overwritten completely by the read.
        let mut buf = Vec::with_capacity(n);
        unsafe { buf.set_len(n); }
        try!(self.read_into(&mut buf[..]));
        Ok(buf)
    }

    #[inline(always)]
    fn read_i8(&mut self) -> io::Result<i8> {
        self.read_u8().map(|x| x as i8)
    }

    #[inline(always)]
    fn read_u8(&mut self) -> io::Result<u8> {
        let mut buf = [0u8; 1];
        try!(self.read_into(&mut buf));
        Ok(buf[0])
    }

    #[inline(always)]
    fn read_le_i16(&mut self) -> io::Result<i16> {
        self.read_le_u16().map(|x| x as i16)
    }

    #[inline(always)]
    fn read_le_u16(&mut self) -> io::Result<u16> {
        let mut buf = [0u8; 2];
        try!(self.read_into(&mut buf));
        Ok((buf[1] as u16) << 8 | (buf[0] as u16))
    }

    #[inline(always)]
    fn read_le_i24(&mut self) -> io::Result<i32> {
        self.read_le_u24().map(|x|
            // Test the sign bit, if it is set, extend the sign bit into the
            // most significant byte.
            if x & (1 << 23) == 0 {
                x as i32
            } else {
                (x | 0xff_00_00_00) as i32
            }
        )
    }

    #[inline(always)]
    fn read_le_u24(&mut self) -> io::Result<u32> {
        let mut buf = [0u8; 3];
        try!(self.read_into(&mut buf));
        Ok((buf[2] as u32) << 16 | (buf[1] as u32) << 8 | (buf[0] as u32))
    }

    #[inline(always)]
    fn read_le_i32(&mut self) -> io::Result<i32> {
        self.read_le_u32().map(|x| x as i32)
    }

    #[inline(always)]
    fn read_le_u32(&mut self) -> io::Result<u32> {
        let mut buf = [0u8; 4];
        try!(self.read_into(&mut buf));
        Ok((buf[3] as u32) << 24 | (buf[2] as u32) << 16 |
           (buf[1] as u32) << 8  | (buf[0] as u32) << 0)
    }

    #[inline(always)]
    fn read_le_f32(&mut self) -> io::Result<f32> {
        self.read_le_u32().map(|u| unsafe { mem::transmute(u) })
    }
}

/// The different chunks that a WAVE file can contain.
enum ChunkKind {
    Fmt,
    Fact,
    Data,
    Unknown,
}

/// Describes the structure of a chunk in the WAVE file.
struct ChunkHeader {
    pub kind: ChunkKind,
    pub len: u32,
}

/// Specifies properties of the audio data, as well as the layout of the stream.
#[derive(Clone, Copy)]
pub struct WavSpecEx {
    /// The normal information about the audio data.
    ///
    /// Bits per sample here is the number of _used_ bits per sample, not the
    /// number of bits used to _store_ a sample.
    pub spec: WavSpec,

    /// The number of bytes used to store a sample.
    pub bytes_per_sample: u16,
}

/// A reader that reads the WAVE format from the underlying reader.
///
/// A `WavReader` is a streaming reader. It reads data from the underlying
/// reader on demand, and it reads no more than strictly necessary. No internal
/// buffering is performed on the underlying reader, but this can easily be
/// added by wrapping the reader in an `io::BufReader`. The `open` constructor
/// takes care of this for you.
pub struct WavReader<R> {
    /// Specification of the file as found in the fmt chunk.
    spec: WavSpec,

    /// The number of bytes used to store a sample in the stream.
    bytes_per_sample: u16,

    /// The number of samples in the data chunk.
    ///
    /// The data chunk is limited to a 4 GiB length because its header has a
    /// 32-bit length field. A sample takes at least one byte to store, so the
    /// number of samples is always less than 2^32.
    num_samples: u32,

    /// The number of samples read so far.
    samples_read: u32,

    /// The reader from which the WAVE format is read.
    reader: R,
}

/// An iterator that yields samples of type `S` read from a `WavReader`.
///
/// The type `S` must have at least as many bits as the bits per sample of the
/// file, otherwise every iteration will return an error.
pub struct WavSamples<'wr, R, S>
    where R: 'wr
{
    reader: &'wr mut WavReader<R>,
    phantom_sample: marker::PhantomData<S>,
}

/// An iterator that yields samples of type `S` read from a `WavReader`.
///
/// The type `S` must have at least as many bits as the bits per sample of the
/// file, otherwise every iteration will return an error.
pub struct WavIntoSamples<R, S> {
    reader: WavReader<R>,
    phantom_sample: marker::PhantomData<S>,
}

/// Reads the RIFF WAVE header, returns the supposed file size.
///
/// This function can be used to quickly check if the file could be a wav file
/// by reading 12 bytes of the header. If an `Ok` is returned, the file is
/// likely a wav file. If an `Err` is returned, it is definitely not a wav
/// file.
///
/// The returned file size cannot be larger than 2<sup>32</sup> + 7 bytes.
pub fn read_wave_header<R: io::Read>(reader: &mut R) -> Result<u64> {
    // Every WAVE file starts with the four bytes 'RIFF' and a file length.
    // TODO: the old approach of having a slice on the stack and reading
    // into it is more cumbersome, but also avoids a heap allocation. Is
    // the compiler smart enough to avoid the heap allocation anyway? I
    // would not expect it to be.
    if b"RIFF" != &try!(reader.read_bytes(4))[..] {
        return Err(Error::FormatError("no RIFF tag found"));
    }

    let file_len = try!(reader.read_le_u32());

    // Next four bytes indicate the file type, which should be WAVE.
    if b"WAVE" != &try!(reader.read_bytes(4))[..] {
        return Err(Error::FormatError("no WAVE tag found"));
    }

    // The stored file length does not include the "RIFF" magic and 4-byte
    // length field, so the total size is 8 bytes more than what is stored.
    Ok(file_len as u64 + 8)
}

/// Reads chunks until a data chunk is encountered.
///
/// Returns the information from the fmt chunk and the length of the data
/// chunk in bytes. Afterwards, the reader will be positioned at the first
/// content byte of the data chunk.
pub fn read_until_data<R: io::Read>(mut reader: R) -> Result<(WavSpecEx, u32)> {
    let mut spec_opt = None;

    loop {
        let header = try!(WavReader::read_chunk_header(&mut reader));
        match header.kind {
            ChunkKind::Fmt => {
                let spec = try!(WavReader::read_fmt_chunk(&mut reader, header.len));
                spec_opt = Some(spec);
            }
            ChunkKind::Fact => {
                // All (compressed) non-PCM formats must have a fact chunk
                // (Rev. 3 documentation). The chunk contains at least one
                // value, the number of samples in the file.
                //
                // The number of samples field is redundant for sampled
                // data, since the Data chunk indicates the length of the
                // data. The number of samples can be determined from the
                // length of the data and the container size as determined
                // from the Format chunk.
                // http://www-mmsp.ece.mcgill.ca/documents/audioformats/wave/wave.html
                let _samples_per_channel = reader.read_le_u32();
            }
            ChunkKind::Data => {
                // The "fmt" chunk must precede the "data" chunk. Any
                // chunks that come after the data chunk will be ignored.
                if let Some(spec) = spec_opt {
                    return Ok((spec, header.len));
                } else {
                    return Err(Error::FormatError("missing fmt chunk"));
                }
            }
            ChunkKind::Unknown => {
                // Ignore the chunk; skip all of its bytes.
                try!(reader.skip_bytes(header.len as usize));
            }
        }
        // If no data chunk is ever encountered, the function will return
        // via one of the try! macros that return an Err on end of file.
    }
}

impl<R> WavReader<R>
    where R: io::Read
{
    /// Attempts to read an 8-byte chunk header.
    fn read_chunk_header(reader: &mut R) -> Result<ChunkHeader> {
        let mut kind_str = [0; 4];
        try!(reader.read_into(&mut kind_str));
        let len = try!(reader.read_le_u32());

        let kind = match &kind_str[..] {
            b"fmt " => ChunkKind::Fmt,
            b"fact" => ChunkKind::Fact,
            b"data" => ChunkKind::Data,
            _ => ChunkKind::Unknown,
        };

        Ok(ChunkHeader { kind: kind, len: len })
    }

    /// Reads the fmt chunk of the file, returns the information it provides.
    fn read_fmt_chunk(reader: &mut R, chunk_len: u32) -> Result<WavSpecEx> {
        // A minimum chunk length of at least 16 is assumed. Note: actually,
        // the first 14 bytes contain enough information to fully specify the
        // file. I have not encountered a file with a 14-byte fmt section
        // though. If you ever encounter such file, please contact me.
        if chunk_len < 16 {
            return Err(Error::FormatError("invalid fmt chunk size"));
        }

        // Read the WAVEFORMAT struct, as defined at
        // https://msdn.microsoft.com/en-us/library/ms713498.aspx.
        // ```
        // typedef struct {
        //     WORD  wFormatTag;
        //     WORD  nChannels;
        //     DWORD nSamplesPerSec;
        //     DWORD nAvgBytesPerSec;
        //     WORD  nBlockAlign;
        // } WAVEFORMAT;
        // ```
        // The WAVEFORMATEX struct has two more members, as defined at
        // https://msdn.microsoft.com/en-us/library/ms713497.aspx
        // ```
        // typedef struct {
        //     WORD  wFormatTag;
        //     WORD  nChannels;
        //     DWORD nSamplesPerSec;
        //     DWORD nAvgBytesPerSec;
        //     WORD  nBlockAlign;
        //     WORD  wBitsPerSample;
        //     WORD  cbSize;
        // } WAVEFORMATEX;
        // ```
        // There is also PCMWAVEFORMAT as defined at
        // https://msdn.microsoft.com/en-us/library/dd743663.aspx.
        // ```
        // typedef struct {
        //   WAVEFORMAT wf;
        //   WORD       wBitsPerSample;
        // } PCMWAVEFORMAT;
        // ```
        // In either case, the minimal length of the fmt section is 16 bytes,
        // meaning that it does include the `wBitsPerSample` field. (The name
        // is misleading though, because it is the number of bits used to store
        // a sample, not all of the bits need to be valid for all versions of
        // the WAVE format.)
        let format_tag = try!(reader.read_le_u16());
        let n_channels = try!(reader.read_le_u16());
        let n_samples_per_sec = try!(reader.read_le_u32());
        let n_bytes_per_sec = try!(reader.read_le_u32());
        let block_align = try!(reader.read_le_u16());
        let bits_per_sample = try!(reader.read_le_u16());

        if n_channels == 0 {
            return Err(Error::FormatError("file contains zero channels"));
        }

        // Two of the stored fields are redundant, and may be ignored. We do
        // validate them to fail early for ill-formed files.
        if (Some(bits_per_sample) != (block_align / n_channels).checked_mul(8)) ||
           (Some(n_bytes_per_sec) != (block_align as u32).checked_mul(n_samples_per_sec)) {
            return Err(Error::FormatError("inconsistent fmt chunk"));
        }

        // The bits per sample for a WAVEFORMAT struct is the number of bits
        // used to store a sample. Therefore, it must be a multiple of 8.
        if bits_per_sample % 8 != 0 {
            return Err(Error::FormatError("bits per sample is not a multiple of 8"));
        }

        if bits_per_sample == 0 {
            return Err(Error::FormatError("bits per sample is 0"));
        }

        let spec = WavSpec {
            channels: n_channels,
            sample_rate: n_samples_per_sec,
            bits_per_sample: bits_per_sample,
            sample_format: SampleFormat::Int,
        };

        // The different format tag definitions can be found in mmreg.h that is
        // part of the Windows SDK. The vast majority are esoteric vendor-
        // specific formats. We handle only a few. The following values could
        // be of interest:
        const PCM: u16 = 0x0001;
        const ADPCM: u16 = 0x0002;
        const IEEE_FLOAT: u16 = 0x0003;
        const EXTENSIBLE: u16 = 0xfffe;
        match format_tag {
            PCM => WavReader::read_wave_format_pcm(reader, chunk_len, spec),
            ADPCM => Err(Error::Unsupported),
            IEEE_FLOAT => WavReader::read_wave_format_ieee_float(reader, chunk_len, spec),
            EXTENSIBLE => WavReader::read_wave_format_extensible(reader, chunk_len, spec),
            _ => Err(Error::Unsupported),
        }
    }

    fn read_wave_format_pcm(mut reader: R, chunk_len: u32, spec: WavSpec) -> Result<WavSpecEx> {
        // When there is a PCMWAVEFORMAT struct, the chunk is 16 bytes long.
        // The WAVEFORMATEX structs includes two extra bytes, `cbSize`.
        let is_wave_format_ex = match chunk_len {
            16 => false,
            18 => true,
            // Other sizes are unexpected, but such files do occur in the wild,
            // and reading these files is still possible, so we allow this.
            40 => true,
            _ => return Err(Error::FormatError("unexpected fmt chunk size")),
        };

        if is_wave_format_ex {
            // `cbSize` can be used for non-PCM formats to specify the size of
            // additional data. However, for WAVE_FORMAT_PCM, the member should
            // be ignored, see https://msdn.microsoft.com/en-us/library/ms713497.aspx.
            // Nonzero values do in fact occur in practice.
            let _cb_size = try!(reader.read_le_u16());

            // For WAVE_FORMAT_PCM in WAVEFORMATEX, only 8 or 16 bits per
            // sample are valid according to
            // https://msdn.microsoft.com/en-us/library/ms713497.aspx.
            // 24 bits per sample is explicitly not valid inside a WAVEFORMATEX
            // structure, but such files do occur in the wild nonetheless, and
            // there is no good reason why we couldn't read them.
            match spec.bits_per_sample {
                8 => {}
                16 => {}
                24 => {}
                _ => return Err(Error::FormatError("bits per sample is not 8 or 16")),
            }
        }

        // If the chunk len was longer than expected, ignore the additional bytes.
        if chunk_len == 40 {
            try!(reader.skip_bytes(22));
        }

        let spec_ex = WavSpecEx {
            spec: spec,
            bytes_per_sample: spec.bits_per_sample / 8,
        };
        Ok(spec_ex)
    }

    fn read_wave_format_ieee_float(mut reader: R, chunk_len: u32, spec: WavSpec)
                                   -> Result<WavSpecEx> {
        // When there is a PCMWAVEFORMAT struct, the chunk is 16 bytes long.
        // The WAVEFORMATEX structs includes two extra bytes, `cbSize`.
        let is_wave_format_ex = chunk_len == 18;

        if !is_wave_format_ex && chunk_len != 16 {
            return Err(Error::FormatError("unexpected fmt chunk size"));
        }

        if is_wave_format_ex {
            // For WAVE_FORMAT_IEEE_FLOAT which we are reading, there should
            // be no extra data, so `cbSize` should be 0.
            let cb_size = try!(reader.read_le_u16());
            if cb_size != 0 {
                return Err(Error::FormatError("unexpected WAVEFORMATEX size"));
            }
        }

        // For WAVE_FORMAT_IEEE_FLOAT, the bits_per_sample field should be
        // set to `32` according to
        // https://msdn.microsoft.com/en-us/library/windows/hardware/ff538799(v=vs.85).aspx.
        //
        // Note that some applications support 64 bits per sample. This is
        // not yet supported by hound.
        if spec.bits_per_sample != 32 {
            return Err(Error::FormatError("bits per sample is not 32"));
        }

        let spec_ex = WavSpecEx {
            spec: WavSpec {
                sample_format: SampleFormat::Float,
                ..spec
            },
            bytes_per_sample: spec.bits_per_sample / 8,
        };
        Ok(spec_ex)
    }

    fn read_wave_format_extensible(mut reader: R, chunk_len: u32, spec: WavSpec)
                                   -> Result<WavSpecEx> {
        // 16 bytes were read already, there must be two more for the `cbSize`
        // field, and `cbSize` itself must be at least 22, so the chunk length
        // must be at least 40.
        if chunk_len < 40 {
            return Err(Error::FormatError("unexpected fmt chunk size"));
        }

        // `cbSize` is the last field of the WAVEFORMATEX struct.
        let cb_size = try!(reader.read_le_u16());

        // `cbSize` must be at least 22, but in this case we assume that it is
        // 22, because we would not know how to handle extra data anyway.
        if cb_size != 22 {
            return Err(Error::FormatError("unexpected WAVEFORMATEXTENSIBLE size"));
        }

        // What follows is the rest of the `WAVEFORMATEXTENSIBLE` struct, as
        // defined at https://msdn.microsoft.com/en-us/library/ms713496.aspx.
        // ```
        // typedef struct {
        //   WAVEFORMATEX  Format;
        //   union {
        //     WORD  wValidBitsPerSample;
        //     WORD  wSamplesPerBlock;
        //     WORD  wReserved;
        //   } Samples;
        //   DWORD   dwChannelMask;
        //   GUID    SubFormat;
        // } WAVEFORMATEXTENSIBLE, *PWAVEFORMATEXTENSIBLE;
        // ```
        let valid_bits_per_sample = try!(reader.read_le_u16());
        let _channel_mask = try!(reader.read_le_u32()); // Not used for now.
        let mut subformat = [0u8; 16];
        try!(reader.read_into(&mut subformat));

        // Several GUIDS are defined. At the moment, only the following are supported:
        //
        // * KSDATAFORMAT_SUBTYPE_PCM (PCM audio with integer samples).
        // * KSDATAFORMAT_SUBTYPE_IEEE_FLOAT (PCM audio with floating point samples).
        let sample_format = match subformat {
            super::KSDATAFORMAT_SUBTYPE_PCM => SampleFormat::Int,
            super::KSDATAFORMAT_SUBTYPE_IEEE_FLOAT => SampleFormat::Float,
            _ => return Err(Error::Unsupported),
        };

        let spec_ex = WavSpecEx {
            spec: WavSpec {
                bits_per_sample: valid_bits_per_sample,
                sample_format: sample_format,
                ..spec
            },
            bytes_per_sample: spec.bits_per_sample / 8,
        };
        Ok(spec_ex)
    }

    /// Attempts to create a reader that reads the WAVE format.
    ///
    /// The header is read immediately. Reading the data will be done on
    /// demand.
    pub fn new(mut reader: R) -> Result<WavReader<R>> {
        try!(read_wave_header(&mut reader));
        let (spec_ex, data_len) = try!(read_until_data(&mut reader));

        let num_samples = data_len / spec_ex.bytes_per_sample as u32;

        // It could be that num_samples * bytes_per_sample < data_len.
        // If data_len is not a multiple of bytes_per_sample, there is some
        // trailing data. Either somebody is playing some steganography game,
        // but more likely something is very wrong, and we should refuse to
        // decode the file, as it is invalid.
        if num_samples * spec_ex.bytes_per_sample as u32 != data_len {
            let msg = "data chunk length is not a multiple of sample size";
            return Err(Error::FormatError(msg));
        }

        // The number of samples must be a multiple of the number of channels,
        // otherwise the last inter-channel sample would not have data for all
        // channels.
        if num_samples % spec_ex.spec.channels as u32 != 0 {
            return Err(Error::FormatError("invalid data chunk length"));
        }

        let wav_reader = WavReader {
            spec: spec_ex.spec,
            bytes_per_sample: spec_ex.bytes_per_sample,
            num_samples: num_samples,
            samples_read: 0,
            reader: reader,
        };

        Ok(wav_reader)
    }

    /// Returns information about the WAVE file.
    pub fn spec(&self) -> WavSpec {
        self.spec
    }

    /// Returns an iterator over all samples.
    ///
    /// The channel data is is interleaved. The iterator is streaming. That is,
    /// if you call this method once, read a few samples, and call this method
    /// again, the second iterator will not start again from the beginning of
    /// the file, it will continue where the first iterator stopped.
    ///
    /// The type `S` must have at least `spec().bits_per_sample` bits,
    /// otherwise every iteration will return an error. All bit depths up to
    /// 32 bits per sample can be decoded into an `i32`, but if you know
    /// beforehand that you will be reading a file with 16 bits per sample, you
    /// can save memory by decoding into an `i16`.
    ///
    /// The type of `S` (int or float) must match `spec().sample_format`,
    /// otherwise every iteration will return an error.
    pub fn samples<'wr, S: Sample>(&'wr mut self) -> WavSamples<'wr, R, S> {
        WavSamples {
            reader: self,
            phantom_sample: marker::PhantomData,
        }
    }

    /// Same as `samples`, but takes ownership of the `WavReader`.
    ///
    /// See `samples()` for more info.
    pub fn into_samples<S: Sample>(self) -> WavIntoSamples<R, S> {
        WavIntoSamples {
            reader: self,
            phantom_sample: marker::PhantomData,
        }
    }

    /// Returns the duration of the file in samples.
    ///
    /// The duration is independent of the number of channels. It is expressed
    /// in units of samples. The duration in seconds can be obtained by
    /// dividing this number by the sample rate. The duration is independent of
    /// how many samples have been read already.
    pub fn duration(&self) -> u32 {
        self.num_samples / self.spec.channels as u32
    }

    /// Returns the number of values that the sample iterator will yield.
    ///
    /// The length of the file is its duration (in samples) times the number of
    /// channels. The length is independent of how many samples have been read
    /// already. To get the number of samples left, use `len()` on the
    /// `samples()` iterator.
    pub fn len(&self) -> u32 {
        self.num_samples
    }

    /// Destroys the `WavReader` and returns the underlying reader.
    pub fn into_inner(self) -> R {
        self.reader
    }

    /// Seek to the given time within the file.
    ///
    /// The given time is measured in number of samples (independent of the
    /// number of channels) since the beginning of the audio data. To seek to
    /// a particular time in seconds, multiply the number of seconds with
    /// `WavSpec::sample_rate`. The given time should not exceed the duration of
    /// the file (returned by `duration()`). The behavior when seeking beyond
    /// `duration()` depends on the reader's `Seek` implementation.
    ///
    /// This method requires that the inner reader `R` implements `Seek`.
    pub fn seek(&mut self, time: u32) -> io::Result<()>
        where R: io::Seek,
    {
        let bytes_per_sample = self.spec.bits_per_sample / 8;
        let sample_position = time * self.spec.channels as u32;
        let offset_samples = sample_position as i64 - self.samples_read as i64;
        let offset_bytes = offset_samples * bytes_per_sample as i64;
        try!(self.reader.seek(io::SeekFrom::Current(offset_bytes)));
        self.samples_read = sample_position;
        Ok(())
    }
}

impl WavReader<io::BufReader<fs::File>> {
    /// Attempts to create a reader that reads from the specified file.
    ///
    /// This is a convenience constructor that opens a `File`, wraps it in a
    /// `BufReader` and then constructs a `WavReader` from it.
    pub fn open<P: AsRef<path::Path>>(filename: P) -> Result<WavReader<io::BufReader<fs::File>>> {
        let file = try!(fs::File::open(filename));
        let buf_reader = io::BufReader::new(file);
        WavReader::new(buf_reader)
    }
}

fn iter_next<R, S>(reader: &mut WavReader<R>) -> Option<Result<S>>
    where R: io::Read,
          S: Sample
{
    if reader.samples_read < reader.num_samples {
        reader.samples_read += 1;
        let sample = Sample::read(&mut reader.reader,
                                  reader.spec.sample_format,
                                  reader.bytes_per_sample,
                                  reader.spec.bits_per_sample);
        Some(sample.map_err(Error::from))
    } else {
        None
    }
}

fn iter_size_hint<R>(reader: &WavReader<R>) -> (usize, Option<usize>) {
    let samples_left = reader.num_samples - reader.samples_read;
    (samples_left as usize, Some(samples_left as usize))
}

impl<'wr, R, S> Iterator for WavSamples<'wr, R, S>
    where R: io::Read,
          S: Sample
{
    type Item = Result<S>;

    fn next(&mut self) -> Option<Result<S>> {
        iter_next(&mut self.reader)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        iter_size_hint(&self.reader)
    }
}

impl<'wr, R, S> ExactSizeIterator for WavSamples<'wr, R, S>
    where R: io::Read,
          S: Sample
{
}

impl<R, S> Iterator for WavIntoSamples<R, S>
    where R: io::Read,
          S: Sample
{
    type Item = Result<S>;

    fn next(&mut self) -> Option<Result<S>> {
        iter_next(&mut self.reader)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        iter_size_hint(&self.reader)
    }
}

impl<R, S> ExactSizeIterator for WavIntoSamples<R, S>
    where R: io::Read,
          S: Sample
{
}

#[test]
fn duration_and_len_agree() {
    let files = &["testsamples/pcmwaveformat-16bit-44100Hz-mono.wav",
                  "testsamples/waveformatex-16bit-44100Hz-stereo.wav",
                  "testsamples/waveformatextensible-32bit-48kHz-stereo.wav"];

    for fname in files {
        let reader = WavReader::open(fname).unwrap();
        assert_eq!(reader.spec().channels as u32 * reader.duration(),
                   reader.len());
    }
}

/// Tests reading a wave file with the PCMWAVEFORMAT struct.
#[test]
fn read_wav_pcm_wave_format_pcm() {
    let mut wav_reader = WavReader::open("testsamples/pcmwaveformat-16bit-44100Hz-mono.wav")
        .unwrap();

    assert_eq!(wav_reader.spec().channels, 1);
    assert_eq!(wav_reader.spec().sample_rate, 44100);
    assert_eq!(wav_reader.spec().bits_per_sample, 16);
    assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);

    let samples: Vec<i16> = wav_reader.samples()
        .map(|r| r.unwrap())
        .collect();

    // The test file has been prepared with these exact four samples.
    assert_eq!(&samples[..], &[2, -3, 5, -7]);
}

#[test]
fn read_wav_skips_unknown_chunks() {
    // The test samples are the same as without the -extra suffix, but ffmpeg
    // has kindly added some useless chunks in between the fmt and data chunk.
    let files = ["testsamples/pcmwaveformat-16bit-44100Hz-mono-extra.wav",
                 "testsamples/waveformatex-16bit-44100Hz-mono-extra.wav"];

    for file in &files {
        let mut wav_reader = WavReader::open(file).unwrap();

        assert_eq!(wav_reader.spec().channels, 1);
        assert_eq!(wav_reader.spec().sample_rate, 44100);
        assert_eq!(wav_reader.spec().bits_per_sample, 16);
        assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);

        let sample = wav_reader.samples::<i16>().next().unwrap().unwrap();
        assert_eq!(sample, 2);
    }
}

#[test]
fn len_and_size_hint_are_correct() {
    let mut wav_reader = WavReader::open("testsamples/pcmwaveformat-16bit-44100Hz-mono.wav")
        .unwrap();

    assert_eq!(wav_reader.len(), 4);

    {
        let mut samples = wav_reader.samples::<i16>();

        assert_eq!(samples.size_hint(), (4, Some(4)));
        samples.next();
        assert_eq!(samples.size_hint(), (3, Some(3)));
    }

    // Reading should not affect the initial length.
    assert_eq!(wav_reader.len(), 4);

    // Creating a new iterator resumes where the previous iterator stopped.
    {
        let mut samples = wav_reader.samples::<i16>();

        assert_eq!(samples.size_hint(), (3, Some(3)));
        samples.next();
        assert_eq!(samples.size_hint(), (2, Some(2)));
    }
}

#[test]
fn size_hint_is_exact() {
    let files = &["testsamples/pcmwaveformat-16bit-44100Hz-mono.wav",
                  "testsamples/waveformatex-16bit-44100Hz-stereo.wav",
                  "testsamples/waveformatextensible-32bit-48kHz-stereo.wav"];

    for fname in files {
        let mut reader = WavReader::open(fname).unwrap();
        let len = reader.len();
        let mut iter = reader.samples::<i32>();
        for i in 0..len {
            let remaining = (len - i) as usize;
            assert_eq!(iter.size_hint(), (remaining, Some(remaining)));
            assert!(iter.next().is_some());
        }
        assert!(iter.next().is_none());
    }
}

#[test]
fn samples_equals_into_samples() {
    let wav_reader_val = WavReader::open("testsamples/pcmwaveformat-8bit-44100Hz-mono.wav").unwrap();
    let mut wav_reader_ref = WavReader::open("testsamples/pcmwaveformat-8bit-44100Hz-mono.wav").unwrap();

    let samples_val: Vec<i16> = wav_reader_val.into_samples()
                                              .map(|r| r.unwrap())
                                              .collect();

    let samples_ref: Vec<i16> = wav_reader_ref.samples()
                                              .map(|r| r.unwrap())
                                              .collect();

    assert_eq!(samples_val, samples_ref);
}

/// Tests reading a wave file with the WAVEFORMATEX struct.
#[test]
fn read_wav_wave_format_ex_pcm() {
    let mut wav_reader = WavReader::open("testsamples/waveformatex-16bit-44100Hz-mono.wav")
        .unwrap();

    assert_eq!(wav_reader.spec().channels, 1);
    assert_eq!(wav_reader.spec().sample_rate, 44100);
    assert_eq!(wav_reader.spec().bits_per_sample, 16);
    assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);

    let samples: Vec<i16> = wav_reader.samples()
                                      .map(|r| r.unwrap())
                                      .collect();

    // The test file has been prepared with these exact four samples.
    assert_eq!(&samples[..], &[2, -3, 5, -7]);
}

#[test]
fn read_wav_wave_format_ex_ieee_float() {
    let mut wav_reader = WavReader::open("testsamples/waveformatex-ieeefloat-44100Hz-mono.wav")
        .unwrap();

    assert_eq!(wav_reader.spec().channels, 1);
    assert_eq!(wav_reader.spec().sample_rate, 44100);
    assert_eq!(wav_reader.spec().bits_per_sample, 32);
    assert_eq!(wav_reader.spec().sample_format, SampleFormat::Float);

    let samples: Vec<f32> = wav_reader.samples()
                                      .map(|r| r.unwrap())
                                      .collect();

    // The test file has been prepared with these exact four samples.
    assert_eq!(&samples[..], &[2.0, 3.0, -16411.0, 1019.0]);
}

#[test]
fn read_wav_stereo() {
    let mut wav_reader = WavReader::open("testsamples/waveformatex-16bit-44100Hz-stereo.wav")
        .unwrap();

    assert_eq!(wav_reader.spec().channels, 2);
    assert_eq!(wav_reader.spec().sample_rate, 44100);
    assert_eq!(wav_reader.spec().bits_per_sample, 16);
    assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);

    let samples: Vec<i16> = wav_reader.samples()
                                      .map(|r| r.unwrap())
                                      .collect();

    // The test file has been prepared with these exact eight samples.
    assert_eq!(&samples[..], &[2, -3, 5, -7, 11, -13, 17, -19]);

}

#[test]
fn read_wav_pcm_wave_format_8bit() {
    let mut wav_reader = WavReader::open("testsamples/pcmwaveformat-8bit-44100Hz-mono.wav")
                                   .unwrap();

    assert_eq!(wav_reader.spec().channels, 1);
    assert_eq!(wav_reader.spec().bits_per_sample, 8);
    assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);

    let samples: Vec<i16> = wav_reader.samples()
                                      .map(|r| r.unwrap())
                                      .collect();

    // The test file has been prepared with these exact four samples.
    assert_eq!(&samples[..], &[19, -53, 89, -127]);
}

/// Regression test for a real-world wav file encountered in Quake.
#[test]
fn read_wav_wave_format_ex_8bit() {
    let mut wav_reader = WavReader::open("testsamples/waveformatex-8bit-11025Hz-mono.wav").unwrap();

    assert_eq!(wav_reader.spec().channels, 1);
    assert_eq!(wav_reader.spec().bits_per_sample, 8);
    assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);

    let samples: Vec<i32> = wav_reader.samples()
                                      .map(|r| r.unwrap())
                                      .collect();

    // The audio data has been zeroed out, but for 8-bit files, a zero means a
    // sample value of 128.
    assert_eq!(&samples[..], &[-128, -128, -128, -128]);
}

/// This test sample tests both reading the WAVEFORMATEXTENSIBLE header, and 24-bit samples.
#[test]
fn read_wav_wave_format_extensible_pcm_24bit() {
    let mut wav_reader = WavReader::open("testsamples/waveformatextensible-24bit-192kHz-mono.wav")
        .unwrap();

    assert_eq!(wav_reader.spec().channels, 1);
    assert_eq!(wav_reader.spec().sample_rate, 192_000);
    assert_eq!(wav_reader.spec().bits_per_sample, 24);
    assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);

    let samples: Vec<i32> = wav_reader.samples()
                                      .map(|r| r.unwrap())
                                      .collect();

    // The test file has been prepared with these exact four samples.
    assert_eq!(&samples[..], &[-17, 4_194_319, -6_291_437, 8_355_817]);
}

#[test]
fn read_wav_32bit() {
    let mut wav_reader = WavReader::open("testsamples/waveformatextensible-32bit-48kHz-stereo.wav")
                                   .unwrap();

    assert_eq!(wav_reader.spec().bits_per_sample, 32);
    assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);

    let samples: Vec<i32> = wav_reader.samples()
                                      .map(|r| r.unwrap())
                                      .collect();

    // The test file has been prepared with these exact four samples.
    assert_eq!(&samples[..], &[19, -229_373, 33_587_161, -2_147_483_497]);
}

#[test]
fn read_wav_wave_format_extensible_ieee_float() {
    let mut wav_reader =
        WavReader::open("testsamples/waveformatextensible-ieeefloat-44100Hz-mono.wav").unwrap();

    assert_eq!(wav_reader.spec().channels, 1);
    assert_eq!(wav_reader.spec().sample_rate, 44100);
    assert_eq!(wav_reader.spec().bits_per_sample, 32);
    assert_eq!(wav_reader.spec().sample_format, SampleFormat::Float);

    let samples: Vec<f32> = wav_reader.samples()
                                      .map(|r| r.unwrap())
                                      .collect();

    // The test file has been prepared with these exact four samples.
    assert_eq!(&samples[..], &[2.0, 3.0, -16411.0, 1019.0]);
}

#[test]
fn read_wav_nonstandard_01() {
    // The test sample here is adapted from a file encountered in the wild (data
    // chunk replaced with two zero samples, some metadata dropped, and the file
    // length in the header fixed). It is not a valid file according to the
    // standard, but many players can deal with it nonetheless. (The file even
    // contains some metadata; open it in a hex editor if you would like to know
    // which program created it.) The file contains a regular PCM format tag,
    // but the size of the fmt chunk is one that would be expected of a
    // WAVEFORMATEXTENSIBLE chunk. The bits per sample is 24, which is invalid
    // for WAVEFORMATEX, but we can read it nonetheless.
    let mut wav_reader = WavReader::open("testsamples/nonstandard-01.wav").unwrap();

    assert_eq!(wav_reader.spec().bits_per_sample, 24);
    assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);

    let samples: Vec<i32> = wav_reader.samples()
                                      .map(|r| r.unwrap())
                                      .collect();

    assert_eq!(&samples[..], &[0, 0]);
}

#[test]
fn wide_read_should_signal_error() {
    let mut reader24 = WavReader::open("testsamples/waveformatextensible-24bit-192kHz-mono.wav")
        .unwrap();

    // Even though we know the first value is 17, and it should fit in an `i8`,
    // a general 24-bit sample will not fit in an `i8`, so this should fail.
    // 16-bit is still not wide enough, but 32-bit should do the trick.
    assert!(reader24.samples::<i8>().next().unwrap().is_err());
    assert!(reader24.samples::<i16>().next().unwrap().is_err());
    assert!(reader24.samples::<i32>().next().unwrap().is_ok());

    let mut reader32 = WavReader::open("testsamples/waveformatextensible-32bit-48kHz-stereo.wav")
        .unwrap();

    // In general, 32-bit samples will not fit in anything but an `i32`.
    assert!(reader32.samples::<i8>().next().unwrap().is_err());
    assert!(reader32.samples::<i16>().next().unwrap().is_err());
    assert!(reader32.samples::<i32>().next().unwrap().is_ok());
}

#[test]
fn sample_format_mismatch_should_signal_error() {
    let mut reader_f32 = WavReader::open("testsamples/waveformatex-ieeefloat-44100Hz-mono.wav")
        .unwrap();

    assert!(reader_f32.samples::<i8>().next().unwrap().is_err());
    assert!(reader_f32.samples::<i16>().next().unwrap().is_err());
    assert!(reader_f32.samples::<i32>().next().unwrap().is_err());
    assert!(reader_f32.samples::<f32>().next().unwrap().is_ok());

    let mut reader_i8 = WavReader::open("testsamples/pcmwaveformat-8bit-44100Hz-mono.wav").unwrap();

    assert!(reader_i8.samples::<i8>().next().unwrap().is_ok());
    assert!(reader_i8.samples::<i16>().next().unwrap().is_ok());
    assert!(reader_i8.samples::<i32>().next().unwrap().is_ok());
    assert!(reader_i8.samples::<f32>().next().unwrap().is_err());
}

#[test]
fn fuzz_crashes_should_be_fixed() {
    use std::fs;
    use std::ffi::OsStr;

    // This is a regression test: all crashes and other issues found through
    // fuzzing should not cause a crash.
    let dir = fs::read_dir("testsamples/fuzz").ok()
                 .expect("failed to enumerate fuzz test corpus");
    for path in dir {
        let path = path.ok().expect("failed to obtain path info").path();
        let is_file = fs::metadata(&path).unwrap().file_type().is_file();
        if is_file && path.extension() == Some(OsStr::new("wav")) {
            println!("    testing {} ...", path.to_str()
                                               .expect("unsupported filename"));
            let mut reader = match WavReader::open(path) {
                Ok(r) => r,
                Err(..) => continue,
            };
            match reader.spec().sample_format {
                SampleFormat::Int => {
                    for sample in reader.samples::<i32>() {
                        match sample {
                            Ok(..) => { }
                            Err(..) => break,
                        }
                    }
                }
                SampleFormat::Float => {
                    for sample in reader.samples::<f32>() {
                        match sample {
                            Ok(..) => { }
                            Err(..) => break,
                        }
                    }
                }
            }
        }
    }
}

#[test]
fn seek_is_consistent() {
    let files = &["testsamples/pcmwaveformat-16bit-44100Hz-mono.wav",
                  "testsamples/waveformatex-16bit-44100Hz-stereo.wav",
                  "testsamples/waveformatextensible-32bit-48kHz-stereo.wav"];
    for fname in files {
        let mut reader = WavReader::open(fname).unwrap();

        // Seeking back to the start should "reset" the reader.
        let count = reader.samples::<i32>().count();
        reader.seek(0).unwrap();
        assert_eq!(reader.samples_read, 0);
        assert_eq!(count, reader.samples::<i32>().count());

        // Seek to the last sample.
        let last_time = reader.duration() - 1;
        let channels = reader.spec.channels;
        reader.seek(last_time).unwrap();
        {
            let mut samples = reader.samples::<i32>();
            for _ in 0..channels {
                assert!(samples.next().is_some());
            }
            assert!(samples.next().is_none());
        }

        // Seeking beyond the audio data produces no samples.
        let num_samples = reader.len();
        reader.seek(num_samples).unwrap();
        assert!(reader.samples::<i32>().next().is_none());
        reader.seek(::std::u32::MAX / channels as u32).unwrap();
        assert!(reader.samples::<i32>().next().is_none());
    }
}